

Why Energy Codes?

There has been a substantial decrease in energy usage in commercial buildings since the 1970s

Where does masonry fit in?

For these *conventional* units, NCMA has tabulated U-factors and R-values for various sizes and whether the cores are filled with insulation.

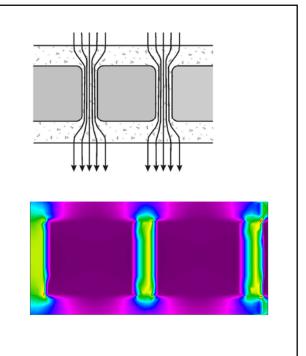
TEK 6-2C is available at ncma.org

Table 2	2—U-Fac	ctors (Bt	u/ hr·ft².º	F) and R	-Values	(hr∙ft².∘F/	Btu) of	Concrete	Mason	y Walls	A
						Cores fills	ed with B:		1		
	Density of							Polyurethan	ne foamed-		
Nominal wythe	concrete.	Cores	empty	Per	lite	Vermi	iculite	in-p		100% so	lid units
thickness, in. (mm)	pef	U	R	U	R	U	R	U.	R	U	R
(incencess, in: (initi)	85	0.467	2.14	0.267	3.75	0.287	3.49	0.239	4.18	0.669	1.49
4 in. (102 mm)e	95	0.492	2.03	0.298	3.36	0.317	3.16	0.272	3.67	0.699	1.43
4 m. (102 mm)	105	0.518	1.93	0.333	3.00	0.351	2.85	0.310	3.23	0.729	1.37
	115	0.546	1.83	0.373	2.68	0.388	2.57	0.351	2.85	0.757	1.32
	125	0.577	1.73	0.416	2.40	0.430	2.32	0.397	2.52	0.784	1.28
	135	0.609	1.64	0.463	2.16	0.476	2.10	0.446	2.24	0.809	1.24
	I I			1		Cores fills	ed with B.		1		
	Density of					Cores min	co what .	Polyurethan	na formad		
Nominal wythe	concrete.	Cores	emoty	Per	lite	Vermi	culite	in-p		Solid G	routed
thickness, in. (mm)	pef	U	R	U	R	U	R	U	R	U	R
	85	0.421	2.37	0.177	5.65	0.192	5.20	0.157	6.38	0.555	1.80
6 in. (152 mm)	95	0.443	2.26	0.200	5.00	0.214	4.66	0.181	5.54	0.584	1.71
	105	0.465	2.15	0.227	4.41	0.240	4.16	0.208	4.80	0.612	1.63
	115	0.489	2.05	0.257	3.89	0.270	3.70	0.240	4.17	0.639	1.56
	125	0.514	1.95	0.292	3.43	0.304	3.29	0.276	3.63	0.666	1.50
	135	0.541	1.85	0.331	3.02	0.342	2.92	0.316	3.16	0.692	1.45
	85	0.391	2.56	0.133	7.54	0.145	6.92	0.117	8.58	0.475	2.11
8 in. (152 mm)	95	0.412	2.43	0.151	6.64	0.162	6.17	0.135	7.40	0.501	2.00
	105	0.433	2.31	0.172	5.83	0.183	5.47	0.157	6.38	0.527	1.90
	115	0.455	2.20	0.196	5.09	0.207	4.83	0.182	5.49	0.553	1.81
	125	0.478	2.09	0.225	4.45	0.235	4.26	0.211	4.73	0.579	1.73
	135	0.502	1.99	0.257	3.88	0.267	3.75	0.245	4.08	0.604	1.66
	85	0.383	2.61	0.108	9.29	0.117	8.56	0.095	10.47	0.425	2.35
10 in. (254 mm)	95	0.403	2.48	0.123	8.12	0.132	7.57	0.111	8.98	0.447	2.23
	105	0.423	2.37	0.142	7.07	0.150	6.65	0.130	7.69	0.470	2.13
	115	0.443	2.26	0.163	6.13	0.172	5.83	0.152	6.57	0.492	2.03
	125	0.464	2.15	0.188	5.31	0.196	5.10	0.178	5.62	0.514	1.95
	135	0.486	2.06	0.217	4.60	0.225	4.45	0.208	4.82	0.537	1.86
	85	0.380	2.63	0.087	11.47	0.095	10.53	0.077	12.99	0.387	2.58
12 in. (305 mm)	95	0.398	2.51	0.100	10.00	0.108	9.29	0.090	11.10	0.406	2.46
	105	0.417	2.40	0.115	8.68	0.123	8.15	0.106	9.47	0.425	2.35
	115	0.436	2.30	0.133	7.50	0.141	7.12	0.124	8.07	0.444	2.25
	125	0.455	2.20	0.155	6.47	0.161	6.19	0.146	6.87	0.463	2.16
	135	0.474	2.11	0.179	5.58	0.186	5.38	0.171	5.86	0.483	2.07
	85	0.377	2.65	0.073	13.66	0.080	12.51	0.065	15.50	0.355	2.82
14 in. (356 mm)	95	0.395	2.53	0.084	11.88	0.091	11.02	0.076	13.23	0.371	2.70
	105	0.413	2.42	0.097	10.29	0.104	9.65	0.089	11.26	0.388	2.58
	115	0.431	2.32	0.113	8.87	0.119	8.40	0.105	9.56	0.404	2.47
	125	0.448	2.23	0.131	7.63	0.137	7.29	0.123	8.12	0.421	2.37
L	135	0.467	2.14	0.153	6.55	0.158	6.31	0.145	6.89	0.439	2.28
	85	0.376	2.66	0.063	15.84	0.069	14.48	0.056	18.02	0.328	3.05
16 in. (406 mm)	95	0.393	2.54	0.073	13.77	0.078	12.74	0.065	15.35	0.342	2.93
	105	0.410	2.44	0.084	11.90	0.090	11.14	0.077	13.04	0.356	2.81
	115	0.427	2.34	0.098	10.24	0.103	9.69	0.090	11.06	0.371	2.69
	125	0.444	2.25	0.114	8.79	0.119	8.39	0.107	9.36	0.387	2.59
	135	0.461	2.17	0.133	7.53	0.138	7.24	0.126	7.93	0.403	2.48

Where does masonry fit in?

In recent years, other units configurations such as A and H have become available.

ASTM C90 (Specification for Loadbearing CMUs) has been changed in recent years to allow other configurations.

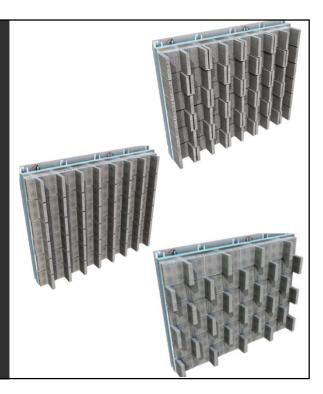

7

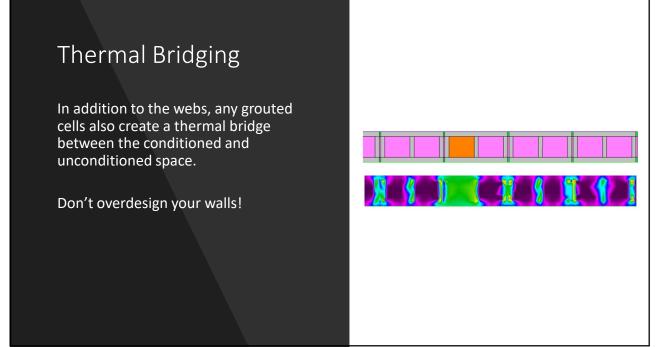
Thermal Bridging

The webs in a concrete masonry unit are essentially thermal bridges

Heat flows through the webs

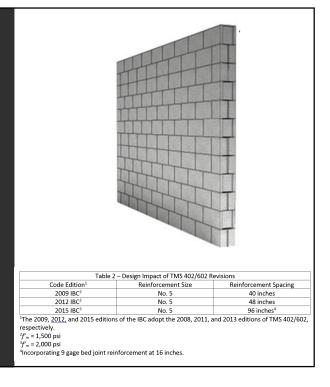
By reducing the webs, we increase the R-value of the wall




Thermal Bridging

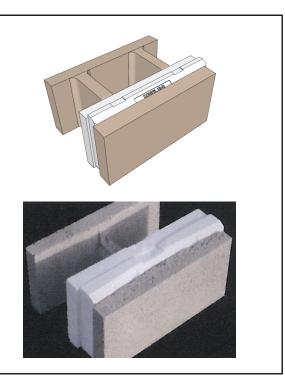
The webs in a concrete masonry unit are essentially thermal bridges

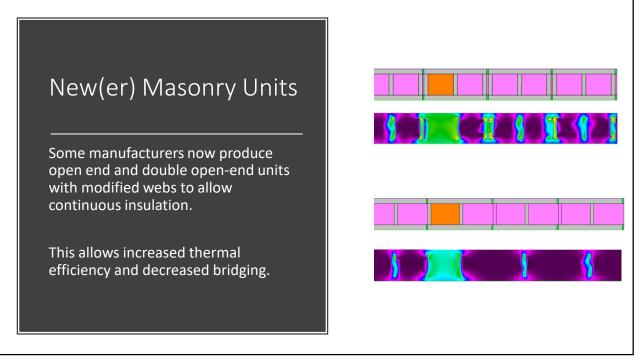
Heat flows through the webs


By reducing the webs, we increase the R-value of the wall

Thermal Bridging

18 ft wall height8-inch CMU40 psf wind pressure3,000 lb/ft axial load

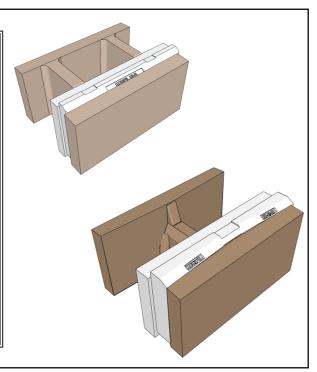


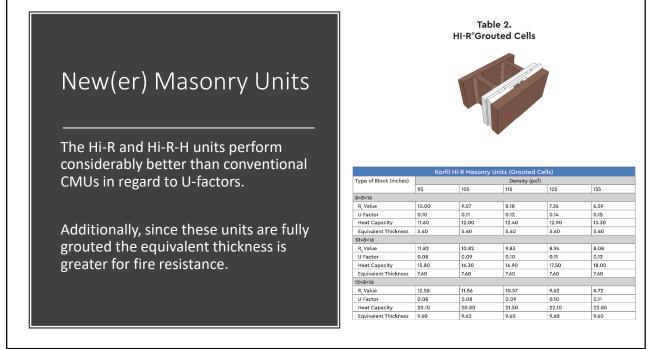

11

New(er) Masonry Units

Some manufacturers now produce open end and double open-end units with modified webs to allow continuous insulation.

This allows increased thermal efficiency and decreased bridging.

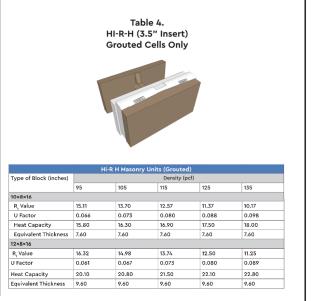

13



Michigan producers represent Concrete Products Group which produces the Hi-R and Hi-R-H units.

These wall systems must be fully grouted.

Jambs, lintels, and control joints must also be accounted for in design.



New(er) Masonry Units

The Hi-R and Hi-R-H units perform considerably better than conventional CMUs in regard to U-factors.

Additionally, since these units are fully grouted the equivalent thickness is greater for fire resistance.

The Hi-R and Hi-R-H units perform considerably better than conventional CMUs in regard to U-factors.

Additionally, since these units are fully grouted the equivalent thickness is greater for fire resistance.

Table 5. HI-R-H (4" Insert) Grouted Cells Only								
	Hi-R	H Masonry Un	<u>its (</u> Grouted)					
Type of Block (inches)	Hi-R	H Masonry Un	its (Grouted) Density (pcf)					
Type of Block (inches)	Hi-R 95	H Masonry Un		125	135			
Type of Block (inches) 12×8×16			Density (pcf)	125	135			
			Density (pcf)	125	135			
12×8×16	95	105	Density (pcf) 115					
12×8×16 R, Value	95	105	Density (pcf) 115 14.78	13.45	12.11			

Check with your local manufacturer to confirm the density of concrete block they offer. Since this depends on locally available materials, density offerings will vary by location.

17

New(er) Masonry Units

Other units, such as the Omni Block are available in the Michigan markets, as well.

These units meet the Energy Code prescriptively!

These units are also available in a variety of colors and finishes.

New(er)	Masonry	Units
		011100

Other units, such as the Omni Block are available in the Michigan markets, as well.

These units meet the Energy Code prescriptively!

These units are also available in a variety of colors and finishes.

GROUTED VERTICALLY EVERY 48"								
Omni Block Masonry Units (Grouted)								
		Omni Block - Density of Block (pcf)						
	85	95	105	115	125	135		
8x8x16								
R-Value	19.9	19.2	18.9	18.5	18.2	17.9		
U-Factor	0.050	0.052	0.053	0.054	0.055	0.056		
Heat Capacity	9.66	10.11	11.08	11.56	12.61	13.60		
Equivalent Thickness	4.36	4.36	4.36	4.36	4.36	4.36		
12x8x16								
R-Value	28.1	27.4	27.1	26.7	26.4	26.1		
U-Factor	0.035	0.036	0.037	0.037	0.038	0.038		
Heat Capacity	13.48	14.38	16.28	17.70	19.53	20.52		
Equivalent Thickness	6.29	6.29	6.29	6.29	6.29	6.29		
The second Descention of Com								

Thermal Properties: Omni Block System 8 and System 12; Reinforced Masonry Engineering Manual (RMEH) Table B-3a, page 300

19

New(er) Masonry Units

Other units, such as the Omni Block are available in the Michigan markets, as well.

These units meet the Energy Code prescriptively!

These units are also available in a variety of colors and finishes.

DEPARTMENT OF LICENSING AND REGULATORY AFFAIRS

DIRECTOR'S OFFICE

CONSTRUCTION CODE

Filed with the Secretary of State May 23, 2017 These rules take effect 120 days after filed with the Secretary of State R 408.31087 Applicable code.

Rule 1087. Rules governing the energy efficiency for the design and construction of buildings and structures, not including residential buildings, shall be those contained in the international energy conservation code, 2015 edition, except for sections C107.2 to C107.5, C108.2 to C108.4, C301.2, C301.3, C302, C401.2.1 to C408.3.2, C502.2 to C502.2.6.2, C503.2 to C503.6 and the ASHRAE energy standard for buildings except low-rise residential buildings, ANSI/ASHRAE/IESNA standard 90.1-2013 (hereafter the standard), including appendices A, B, C, D, and G, except for sections 8.4.2, 8.4.3 to 8.4.3.2. With the amendments noted, the international energy conservation code and the standard are adopted in these rules by reference. The Michigan energy ode is available for inspection at the Lansing office of the Michigan Department of Licensing and Regulatory Affairs, Bureau of Construction Codes, 611 W. Ottawa Street, Lansing, Michigan 48933. The code may be purchased

from the International Code Council, through the bureau's website at www.michigan.gov/hcc, at a cost as of the time of adoption of these rules of \$44.00. The ASHRAE 90.1-2013 standard is available for inspection at the Lansing office of the Michigan Department of Licensing and Regulatory Affairs, Bureau of Construction Codes. The standard may be purchased from the American Society of Heating, Refrigeration and Air-Conditioning Engineers, Inc., 1791 Tullie Circle, NE, Atlanta, Georgia 30329, at a cost as of the time of adoption of these rules of \$135.00 each.

Essentially all the technical sections from the IECC are exempt from the Michigan Energy Code for commercial and high rise (>3 stories) residential defaulting to ASHRAE 90.1

21

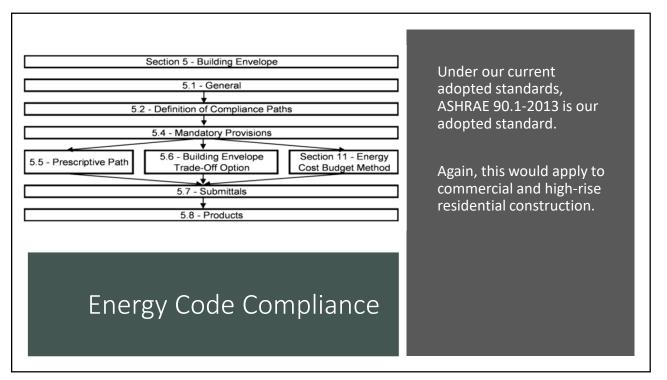
Energy Code Compliance

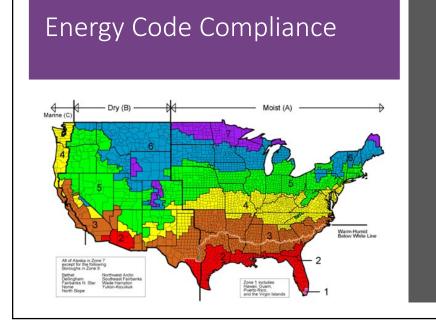
Through the Michigan Energy Code and ASHRAE 90.1 there are three paths for demonstration compliance.

The Prescriptive Packages Approach is typically the simplest, but most architects use the Trade-Off Approach in design.

STANUARU

ANSI/ASHRAE/IES Standard 90.1-2013 (Supersedes ANSI/ASHRAE/IES Standard 90.1-2010) Includes ANSI/ASHRAE/IES Addenda listed in Appendix F


Energy Standard for Buildings Except Low-Rise Residential Buildings


(I-P Edition)

Energy Code Compliance

Under our current adopted standards, ASHRAE 90.1-2013 is our adopted standard.

Again, this would apply to commercial and high-rise residential construction.

ASHRAE 90.1 has broken the U.S. into different climate zones.

Michigan contains climate zones 5, 6, and 7, as shown.

25

Prescriptive Path								
			a cr					
T	blo 5 5-5 B	uilding Envelope F	Paquiraman	ts for Climate Zon	0.5 (A B C)*			
		onresidential	•	Residential	()))	emiheated		
Opaque Elements	Assembly Maximum	Insulation Min. R-Value	Assembly Insulation Maximum Min. R-Value		Assembly Maximum	Insulation Min. R-Value		
Roofs								
Insulation Entirely above Deck	U-0.032	R-30 c.i.	U-0.032	R-30 c.i.	U-0.063	R-15 c.i.		
Metal Building ^a	U-0.037	R-19 + R-11 Ls or R-25 + R-8 Ls	U-0.037	R-19 + R-11 Ls or R-25 + R-8 Ls	U-0.082	R-19		
Attic and Other	U-0.021	R-49	U-0.021	R-49	U-0.034	R-30		
Walls, above Grade								
Mass	U-0.090	R-11.4 c.i.	U-0.080	R-13.3 c.i.	U-0.151 ^b	R-5.7 c.i. ^b		
Metal Building	U-0.050	R-0 + R-19 c.i.	U-0.050	R-0 + R-19 c.i.	U-0.094	R-0 + R-9.8 c.		
Steel Framed	U-0.055	R-13 + R-10 c.i.	U-0.055	R-13 + R-10 c.i.	U-0.084	R-13+R-3.8 c.i		
Wood Framed and Other	U-0.051	R-13 + R-7.5 c.i. or R-19 + R-5 c.i.	U-0.051	R-13 + R-7.5 c.i. or R-19 + R-5 c.i.	U-0.089	R-13		

ASHRAE 90.1 Table 5.5 contains minimum values for the Assembly Maximum U-factor and the Insulation Minimum R-value.

A free read-only version of ASHRAE 90.1 is available at ashrae.org.

Prescriptive Path								
Т		onresidential	•	nts for Climate Zor Residential		emiheated		
Opaque Elements	Assembly Maximum	Insulation Min. R-Value	Assembly Maximum	Insulation Min. R-Value	Assembly Maximum	Insulation Min. R-Value		
oofs								
Insulation Entirely above Deck	U-0.032	R-30 c.i.	U-0.032	R-30 c.i.	U-0.063	R-15 c.i.		
Metal Building ^a	U-0.031	R-25 + R-11 Ls	U-0.029	R-30 + R-11 Ls	U-0.060	R-19 + R-19		
Attic and Other	U-0.021	R-49	U-0.021	R-49	U-0.034	R-30		
alls, above Grade								
Mass	U-0.080	R-13.3 c.i.	U-0.071	R-15.2 c.i.	U-0.151 ^b	R-5.7 c.i. ^b		
Metal Building	U-0.050	R-0 + R-19 c.i.	U-0.050	R-0 + R-19 c.i.	U-0.094	R-0 + R-9.8 c.i.		
Steel Framed	U-0.049	R-13 + R-12.5 c.i.	U-0.049	R-13 + R-12.5 c.i.	U-0.084	R-13 + R-3.8 c.i.		
Wood Framed and Other	U-0.051	R-13 + R-7.5 c.i. or R-19 + R-5 c.i.	U-0.051	R-13 + R-7.5 c.i. or R-19 + R-5 c.i.	U-0.089	R-13		

ASHRAE 90.1 Table 5.5 contains minimum values for the Assembly Maximum U-factor and the Insulation Minimum R-value.

A free read-only version of ASHRAE 90.1 is available at ashrae.org.

27

Prescriptive Path							
		7 Building Envelo		ments for Climate		iemiheated	
Opaque Elements	Assembly Maximum	Insulation Min. R-Value	Assembly Maximum	Residential Insulation Min. R-Value	Assembly Maximum	Insulation Min. R-Value	
loofs							
Insulation Entirely above Deck	U-0.028	R-35 c.i.	U-0.028	R-35 c.i.	U-0.039	R-25 c.i.	
Metal Building ^a	U-0.029	R-30 + R-11 Ls	U-0.029	R-30 + R-11 Ls	U-0.037	R-19 + R-11 Ls or R-25 + R-8 Ls	
Attic and Other	U-0.017	R-60	U-0.017	R-60	U-0.027	R-38	
Valls, above Grade							
Mass	U-0.071	R-15.2 c.i.	U-0.071	R-15.2 c.i.	U-0.123	R-7.6 c.i.	
Metal Building	U-0.044	R-0 + R.22.1 c.i.	U044	R-0 + R.22.1 c.i.	U-0.072	R-0 + R-13 c.i.	
Steel Framed	U-0.049	R-13 + R-12.5 c.i.	U-0.042	R-13 + R-15.6 c.i.	U-0.064	R-13 + R-7.5 c.i.	
Wood Framed and Other	U-0.051	R-13 + R-7.5 c.i. or R-19 + R-5 c.i.	U-0.051	R-13 + R-7.5 c.i. or R-19 + R-5 c.i.	U-0.064	R-13 + R-3.8 c.i.	

ASHRAE 90.1 Table 5.5 contains minimum values for the Assembly Maximum U-factor and the Insulation Minimum R-value.

A free read-only version of ASHRAE 90.1 is available at ashrae.org.

res								
Concr	ete Mason			es (hr·ft².º	F/Btu) and		·	*•°F)
1			ete Masonry				ete Masonry	
Density of CMU, PCF	Ungrouted	Lightly Reinforced	Heavily Reinforced	Fully Grouted	Ungrouted	Lightly Reinforced	Heavily Reinforced	Fully Grouted
CMU, PCF 85	6.38 (0.157)	Reinforced 4.45 (0.225)	Reinforced 3.29 (0.304)	Fully Grouted 1.80 (0.555)	8.58 (0.117)	S.63 (0.177)	4.01 (0.249)	2.11 (0.475)
95	5.54 (0.137)	4.45 (0.225)	3.03 (0.330)	1.71 (0.584)	7.40 (0.135)	5.07 (0.177)	3.70 (0.270)	2.00 (0.501)
105	4.80 (0.208)	3.61 (0.249)	2.80 (0.358)	1.63 (0.612)	6.38 (0.157)	4.55 (0.220)	3.40 (0.294)	1.90 (0.527)
105	4.80 (0.208)	3.25 (0.308)	2.58 (0.358)	1.56 (0.612)	5.49 (0.182)	4.08 (0.220)	3.13 (0.319)	1.90 (0.527)
125	3.63 (0.276)	2.92 (0.342)	2.38 (0.388)	1.50 (0.666)	4.73 (0.211)	3.65 (0.245)	2.88 (0.347)	1.81 (0.553)
125	3.16 (0.316)	2.63 (0.342)	2.38 (0.420)					
Conoro	to Masonw			1.45 (0.692)	4.08 (0.245)	3.27 (0.306)	2.65 (0.378)	1.66 (0.604)
Concre	te Masonr		ly R-Value				s (Btu/hr·f	
Concre	te Masonr	y Assemb	ly R-Value			U-Factors	s (Btu/hr·f	
7	te Masonr	y Assemb	iy R-Value			U-Factors 8-in. Concre	s (Btu/hr-f	t²-°F)
Density of		6-in. Concre	Iy R-Value te Masonry Heavily Reinforced	es (hr-ft².º	F/Btu) and	U-Factors 8-in. Concre Lightly	s (Btu/hr-f	t²-°F)
Density of CMU, PCF	Ungrouted	y Assemb 6-in. Concre Lightly Reinforced	Iy R-Value te Masonry Heavily Reinforced	Fully Grouted	F/Btu) and	U-Factors 8-in. Concre Lightly Reinforced	s (Btu/hr-f te Masonry Heavily Reinforced	t ² •°F)
Density of CMU, PCF 85	Ungrouted 9.48 (0.105)	6-in. Concre Lightly Reinforced 5.45 (0.183)	Iy R-Value te Masonry Heavily Reinforced 3.64 (0.275) 3.40 (0.294)	Fully Grouted	F/Btu) and Ungrouted 12.97 (0.077)	U-Factors 8-in. Concre Lightly Reinforced 6.84 (0.146)	te Masonry Heavily Reinforced 4.40 (0.227)	t ² •°F) Fully Grouted 2.07 (0.483)
Density of CMU, PCF 85 95	Ungrouted 9.48 (0.105) 8.37 (0.119)	6-in. Concre Lightly Reinforced 5.45 (0.183) 5.01 (0.200)	Iy R-Value te Masonry Heavily Reinforced 3.64 (0.275) 3.40 (0.294)	Fully Grouted 1.77 (0.564) 1.69 (0.592)	F/Btu) and Ungrouted 12.97 (0.077) 11.41 (0.088)	U-Factors 8-in. Concre Lightly Reinforced 6.84 (0.146) 6.28 (0.159)	te Masonry Heavily Reinforced 4.40 (0.227) 4.10 (0.244)	Fully Grouted 2.07 (0.483) 1.96 (0.509)
Density of CMU, PCF 85 95 105 115 125	Ungrouted 9.48 (0.105) 8.37 (0.119) 7.36 (0.136)	y Assemb 6-in. Concre Lightly Reinforced 5.45 (0.183) 5.01 (0.200) 4.59 (0.218)	Iy R-Value tet Masonry Heavily Reinforced 3.64 (0.275) 3.40 (0.294) 3.18 (0.315) 2.97 (0.337) 2.78 (0.360)	Fully Grouted 1.77 (0.564) 1.69 (0.592) 1.62 (0.619)	F/Btu) and Ungrouted 12.97 (0.077) 11.41 (0.088) 9.98 (0.100)	U-Factors 8-in. Concre Lightly Reinforced 6.84 (0.146) 6.28 (0.159) 5.75 (0.174)	(Btu/hr-f te Masonry Heavily Reinforced 4.40 (0.227) 4.10 (0.244) 3.83 (0.261) 3.58 (0.279) 3.34 (0.299)	Fully Grouted 2.07 (0.483) 1.96 (0.509) 1.87 (0.535)
Density of CMU, PCF 85 95 105 115	Ungrouted 9.48 (0.105) 8.37 (0.119) 7.36 (0.136) 6.43 (0.155)	y Assemb 6-in. Concre Lightly Reinforced 5.45 (0.183) 5.01 (0.200) 4.59 (0.218) 4.19 (0.239)	Iy R-Value Heavily Reinforced 3.64 (0.275) 3.40 (0.294) 3.18 (0.315) 2.97 (0.337)	Fully Grouted 1.77 (0.564) 1.69 (0.592) 1.62 (0.619) 1.55 (0.645)	F/Btu) and Ungrouted 12.97 (0.077) 11.41 (0.088) 9.98 (0.100) 8.69 (0.115)	U-Factors 8-in. Concre Lightly Reinforced 6.84 (0.146) 6.28 (0.159) 5.75 (0.174) 5.25 (0.191)	(Btu/hr-f te Masonry Heavily Reinforced 4.40 (0.227) 4.10 (0.244) 3.83 (0.261) 3.58 (0.279)	t ^{2.} •F) Fully Grouted 2.07 (0.483) 1.96 (0.509) 1.87 (0.535) 1.79 (0.559)
Density of CMU, PCF 85 95 105 115 125 135	Ungrouted 9.48 (0.105) 8.37 (0.119) 7.36 (0.136) 6.43 (0.155) 5.61 (0.178)	y Assemb 6-in. Concre Lightly Reinforced 5.45 (0.183) 5.01 (0.200) 4.59 (0.218) 4.19 (0.239) 3.82 (0.262) 3.82 (0.262) 3.47 (0.288)	Iy R-Value te Masonry Heavily Reinforced 3.64 (0.275) 3.40 (0.294) 3.18 (0.315) 2.97 (0.337) 2.78 (0.360) 2.59 (0.386) mbly R-Va	Fully Grouted 1.77 (0.564) 1.69 (0.592) 1.62 (0.619) 1.55 (0.645) 1.49 (0.670) 1.44 (0.693)	F/Btu) and Ungrouted 12.97 (0.077) 11.41 (0.088) 9.98 (0.100) 8.69 (0.115) 7.53 (0.133) 6.51 (0.154)	U-Factors 8-in. Concre Lightly Reinforced 6.84 (0.146) 6.28 (0.159) 5.75 (0.174) 5.25 (0.191) 4.78 (0.209) 4.34 (0.230) nd U-Factors	(Btu/hr-f te Masonry Heavily Reinforced 4.40 (0.227) 4.10 (0.244) 3.53 (0.279) 3.58 (0.279) 3.12 (0.321) ors (Btu/hr	t ² •° F) Fully Grouted 2.07 (0.483) 1.96 (0.509) 1.87 (0.535) 1.79 (0.559) 1.72 (0.583) 1.65 (0.605)
Density of CMU, PCF 85 95 105 115 125 135 Cor	Ungrouted 9.48 (0.105) 8.37 (0.119) 7.36 (0.136) 6.43 (0.155) 5.61 (0.178) 4.88 (0.205)	y Assemb 6-in. Concre Lightly Reinforced 5.45 (0.183) 5.01 (0.200) 4.59 (0.218) 4.59 (0.218) 4.59 (0.218) 3.82 (0.262) 3.47 (0.288) onry Asse 6-in. Concre	Iy R-Value ete Masonry Heavily Reinforced 3.64 (0.275) 3.40 (0.294) 3.18 (0.315) 2.97 (0.337) 2.78 (0.360) 2.59 (0.386) mbly R-Va ete Masonry	Fully Grouted 1.77 (0.564) 1.69 (0.592) 1.62 (0.619) 1.55 (0.645) 1.49 (0.670) 1.44 (0.693)	F/Btu) and Ungrouted 12.97 (0.077) 11.41 (0.088) 9.98 (0.100) 8.69 (0.115) 7.53 (0.133) 6.51 (0.154)	U-Factors 8-in. Concre Lightly Reinforced 6.84 (0.146) 6.28 (0.159) 5.75 (0.174) 5.75 (0.174) 5.	(Btu/hr-f te Masonry Heavily Reinforced 4.40 (0.227) 4.10 (0.244) 3.53 (0.279) 3.58 (0.279) 3.12 (0.321) ors (Btu/hr	t ² •° F) Fully Grouted 2.07 (0.483) 1.96 (0.509) 1.87 (0.535) 1.79 (0.559) 1.72 (0.583) 1.65 (0.605)
Density of CMU, PCF 95 105 115 125 135 Cor Density of	Ungrouted 9.48 (0.105) 8.37 (0.119) 7.36 (0.136) 6.43 (0.155) 5.61 (0.178) 4.88 (0.205)	y Assemb 6-in. Concre Lightly Reinforced 5.45 (0.183) 5.01 (0.200) 4.59 (0.218) 4.19 (0.239) 3.82 (0.262) 3.47 (0.288) 00000000000000000000000000000000000	Iy R-Value tee Masonry Heavily Reinforced 3.64 (0.275) 3.40 (0.294) 3.18 (0.315) 2.97 (0.337) 2.78 (0.360) 2.59 (0.386) mbly R-Va tee Masonry Heavily	Fully Grouted 1.77 (0.564) 1.69 (0.592) 1.62 (0.619) 1.55 (0.645) 1.49 (0.670) 1.44 (0.693) alues (hr-fit	F/Btu) and 12.97 (0.077) 11.41 (0.088) 9.98 (0.100) 8.69 (0.115) 7.53 (0.133) 6.51 (0.154) t ² -°F/Btu) a	U-Factors 8-in. Concre Lightly Reinforced 6.84 (0.146) 5.75 (0.174) 5.25 (0.193) 5.75 (0.174) 5.25 (0.193) 4.78 (0.209) 4.34 (0.230) md U-Factor 8-in. Concre Lightly	(Btu/hr-f te Masonry Heavily Reinforced 4.40 (0.227) 3.58 (0.279) 3.12 (0.321) Drs (Btu/hi te Masonry Heavily	t ² -oF) Fully Grouted 2.07 (0.483) 1.36 (0.509) 1.87 (0.535) 1.79 (0.553) 1.79 (0.583) 1.65 (0.605) r-ft ² -oF)
Density of CMU, PCF 85 95 105 115 125 135 Cor	Ungrouted 9.48 (0.105) 8.37 (0.119) 7.36 (0.136) 6.43 (0.155) 5.61 (0.178) 4.88 (0.205)	y Assemb 6-in. Concre Lightly Reinforced 5.45 (0.183) 5.01 (0.200) 4.59 (0.218) 4.59 (0.218) 4.59 (0.218) 3.82 (0.262) 3.47 (0.288) onry Asse 6-in. Concre	Iy R-Value ete Masonry Heavily Reinforced 3.64 (0.275) 3.40 (0.294) 3.18 (0.315) 2.97 (0.337) 2.78 (0.360) 2.59 (0.386) mbly R-Va ete Masonry	Fully Grouted 1.77 (0.564) 1.69 (0.592) 1.62 (0.619) 1.55 (0.645) 1.49 (0.670) 1.44 (0.693)	F/Btu) and Ungrouted 12.97 (0.077) 11.41 (0.088) 9.98 (0.100) 8.69 (0.115) 7.53 (0.133) 6.51 (0.154)	U-Factors 8-in. Concre Lightly Reinforced 6.84 (0.146) 6.28 (0.159) 5.75 (0.174) 5.75 (0.174) 5.	(Btu/hr-f te Masonry Heavily Reinforced 4.40 (0.227) 4.10 (0.244) 3.83 (0.261) 3.58 (0.279) 3.34 (0.299) 3.12 (0.321) ors (Btu/hi te Masonry	Fully Grouted 2.07 (0.483) 1.96 (0.509) 1.72 (0.583) 1.75 (0.559) 1.72 (0.583) 1.65 (0.605) r-ft2-oFj
Density of CMU, PCF 95 105 115 125 135 Cor Density of	Ungrouted 9.48 (0.105) 8.37 (0.119) 7.36 (0.136) 6.43 (0.155) 5.61 (0.178) 4.88 (0.205)	y Assemb 6-in. Concre Lightly Reinforced 5.45 (0.183) 5.01 (0.200) 4.59 (0.218) 4.19 (0.239) 3.82 (0.262) 3.47 (0.288) 00000000000000000000000000000000000	Iy R-Value tee Masonry Heavily Reinforced 3.64 (0.275) 3.40 (0.294) 3.18 (0.315) 2.97 (0.337) 2.78 (0.360) 2.59 (0.386) mbly R-Va tee Masonry Heavily	Fully Grouted 1.77 (0.564) 1.69 (0.592) 1.62 (0.619) 1.55 (0.645) 1.49 (0.670) 1.44 (0.693) alues (hr-fit	F/Btu) and 12.97 (0.077) 11.41 (0.088) 9.98 (0.100) 8.69 (0.115) 7.53 (0.133) 6.51 (0.154) t ² -°F/Btu) a	U-Factors 8-in. Concre Lightly Reinforced 6.84 (0.146) 5.75 (0.174) 5.25 (0.193) 5.75 (0.174) 5.25 (0.193) 4.78 (0.209) 4.34 (0.230) md U-Factor 8-in. Concre Lightly	(Btu/hr-f te Masonry Heavily Reinforced 4.40 (0.227) 3.58 (0.279) 3.12 (0.321) Drs (Btu/hi te Masonry Heavily	t ² •° F) Fully Grouted 2.07 (0.483) 1.96 (0.509) 1.87 (0.535) 1.79 (0.559) 1.72 (0.583) 1.65 (0.605)
Density of CMU, PCF 85 95 105 115 125 135 Cor Density of CMU, PCF	Ungrouted 9.48 (0.105) 8.37 (0.136) 6.43 (0.158) 5.61 (0.178) 4.88 (0.205)	y Assemb 6-in. Concre Ughtly Reinforced 5.45 (0.183) 5.01 (0.200) 4.59 (0.218) 4.19 (0.239) 3.47 (0.288) 00000 4.59 (0.218) 3.47 (0.288) 00000 4.59 (0.218) 00000 4.59 (0.218) 000000 4.59 (0.218) 000000000000000000000000000000000000	Iy R-Value tet Masonry Heavily Reinforced 3.64 (0.275) 3.40 (0.294) 3.18 (0.315) 2.97 (0.337) 2.59 (0.337) 2.59 (0.386) 2.59 (0.386) mbly R-Va tet Masonry Heavily Reinforced	Fully Grouted 1.77 (0.564) 1.69 (0.592) 1.62 (0.619) 1.55 (0.645) 1.49 (0.670) 1.44 (0.693) 1.44 (0.693)	F/Btu) and Ungrouted 12.97 (0.077) 11.41 (0.083) 9.98 (0.100) 8.69 (0.115) 7.53 (0.133) 6.51 (0.154) k ^{22.0} F/Btu) au Ungrouted	U-Factors 8-in. Concre Lightly Reinforced 6.84 (0.146) 6.28 (0.159) 5.75 (0.174) 5.75 (0.174) 5.75 (0.174) 5.75 (0.191) 4.34 (0.230) nd U-Factor B-in. Concre Lightly Reinforced Reinforced	s (Btu/hr-f te Masonry Heavily Reinforced 4.40 (0.227) 4.10 (0.244) 3.83 (0.261) 3.58 (0.279) 3.12 (0.321) 9.312 (0.321) bors (Btu/h) te Masonry Heavily Reinforced	Fully Grouted 2.07 (0.483) 1.96 (0.509) 1.87 (0.535) 1.79 (0.559) 1.72 (0.583) 1.65 (0.605) r.ft2.°F) Fully Groute 2.05 (0.487)
Density of CMU, PCF 85 95 105 115 125 135 Cor Density of CMU, PCF 85	Ungrouted 9.48 (0.105) 8.37 (0.119) 7.36 (0.136) 6.43 (0.155) 5.61 (0.178) 4.88 (0.205) Crete Mase Ungrouted 13.07 (0.077) 11.87 (0.084) 10.69 (0.094)	y Assemb 6-in. Concre Ughtly Reinforced 5.45 (0.183) 5.01 (0.200) 4.59 (0.218) 4.19 (0.239) 3.82 (0.262) 3.47 (0.288) concre 6-in. Concre Ughtly Reinforced 6.30 (0.159) 5.89 (0.170) 5.49 (0.125)	Iy R-Value te Masonry Heavily Reinforced 3.64 (0.279) 3.18 (0.315) 2.59 (0.386) mbly R-Va te Masonry Heavily Reinforced 4.24 (0.236) 3.39 (0.250) 3.376 (0.266)	Fully Grouted 1.77 (0.564) 1.69 (0.592) 1.62 (0.619) 1.49 (0.670) 1.44 (0.693) Hues (hr-ff Fully Grouted 1.76 (0.567) 1.68 (0.595) 1.68 (0.595)	F/Btu) and Ungrouted 12.97 (0.077) 11.41 (0.088) 9.98 (0.100) 8.69 (0.115) 7.53 (0.133) 6.51 (0.154) 12.05 (0.051) 16.35 (0.051) 16.35 (0.051) 16.35 (0.051)	U-Factors 8-in. Concre Ughtly Reinforced 6.28 (0.146) 6.28 (0.159) 5.75 (0.174) 5.75 (0.174) 5.75 (0.174) 5.75 (0.174) 4.78 (0.209) d.34 (0.230) md U-Factor 8-in. Concre Ughtly Reinforced 7.85 (0.127)	s (Btu/hr-f te Masonry Heavily Reinforced 4.40 (0.227) 4.10 (0.244) 3.83 (0.261) 3.34 (0.299) 3.34 (0.299) 3.34 (0.299) 3.34 (0.299) 3.32 (0.321) Ors (Btu/hu Heavily Reinforced 5.12 (0.195) 4.81 (0.208) 4.81 (0.208)	fully Grouted 2.07 (0.483) 1.96 (0.509) 1.87 (0.533) 1.72 (0.583) 1.75 (0.559) reft2-oF) Fully Grouted 2.05 (0.487) 1.95 (0.505) reft2-oF)
Density of CMU, PCF 85 95 105 115 125 125 135 Cor Density of CMU, PCF 85 95 105 115	Ungrouted 9.48 (0.105) 8.37 (0.139) 7.36 (0.136) 6.43 (0.155) 5.61 (0.178) 4.88 (0.205) bcrete Mas: Ungrouted 13.07 (0.077) 11.87 (0.084) 10.69 (0.04) 9.55 (0.105) 9.55 (0.105)	y Assemb 6-in. Concre Ughty Reinforced 5.45 (0.183) 5.01 (0.200) 4.19 (0.239) 3.82 (0.262) 3.82 (0.262) 3.82 (0.262) 3.82 (0.262) 3.82 (0.262) 5.47 (0.288) 6-in. Concre 6-in. Concre 0-in. Concre 6-in. Concre 1.05 (0.162) 5.49 (0.182) 5.40 (0.182) 5	Iy R-Value te Masonry Heavily Reinforced 3.64 (0.279) 3.40 (0.294) 3.18 (0.315) 2.97 (0.337) 2.75 (0.360) 2.59 (0.360) T.59 (0.360) T.59 (0.360) Heavily Reinforced 4.24 (0.236) 3.99 (0.250)	Fully Grouted 1.77 (0.564) 1.69 (0.592) 1.55 (0.645) 1.49 (0.670) 1.44 (0.670) 1.44 (0.670) 1.44 (0.673) Alues (hr-ff Fully Grouted 1.76 (0.567) 1.68 (0.595)	F/Btu) and Ungrouted 12.97 (0.077) 11.41 (0.088) 9.98 (0.100) 8.69 (0.115) 7.53 (0.138) 6.51 (0.154) 7.53 (0.154) 16.35 (0.051) 16.45 (0.068) 14.69 (0.068) 14.69 (0.068)	U-Factors &-in. Concre lightly Reinforced 6.28 (0.146) 5.25 (0.191) 4.78 (0.209) 4.34 (0.200) md U-Factor 8-in. Concre Lightly Reinforced 7.85 (0.127) 7.32 (0.137)	s (Btu/hr-f te Masonry Heavily Reinforced 4.40 (0.227) 4.10 (0.244) 3.38 (0.261) 3.38 (0.261) 3.34 (0.299) 3.34 (0.299) 3.34 (0.299) 3.34 (0.299) 3.34 (0.299) 4.12 (0.241) Heavily Reinforced 5.12 (0.159) 4.81 (0.208) 4.81 (0.208) 4.81 (0.208)	Fully Grouted 2.07 (0.483) 1.96 (0.509) 1.72 (0.559) 1.72 (0.559) 1.72 (0.558) 1.72 (0.558) 1.75 (0.558) 1.75 (0.558) 1.75 (0.558) 1.75 (0.558) 1.75 (0.558) 1.95 (0.518) 1.86 (0.538) 1.78 (0.528)
Density of CMU, PCF 85 95 105 115 125 135 Cor Cor CMU, PCF 85 95 105	Ungrouted 9.48 (0.105) 8.37 (0.119) 7.36 (0.136) 6.43 (0.155) 5.61 (0.178) 4.88 (0.205) Crete Mase Ungrouted 13.07 (0.077) 11.87 (0.084) 10.69 (0.094)	y Assemb 6-in. Concre Ughtly Reinforced 5.45 (0.183) 5.01 (0.200) 4.59 (0.218) 4.19 (0.239) 3.82 (0.262) 3.47 (0.288) concre 6-in. Concre Ughtly Reinforced 6.30 (0.159) 5.89 (0.170) 5.49 (0.125)	Iy R-Value te Masonry Heavily Reinforced 3.64 (0.279) 3.18 (0.315) 2.59 (0.386) mbly R-Va te Masonry Heavily Reinforced 4.24 (0.236) 3.39 (0.250) 3.376 (0.266)	Fully Grouted 1.77 (0.564) 1.69 (0.592) 1.62 (0.619) 1.49 (0.670) 1.44 (0.693) Hues (hr-ff Fully Grouted 1.76 (0.567) 1.68 (0.595) 1.68 (0.595)	F/Btu) and Ungrouted 12.97 (0.077) 11.41 (0.088) 9.98 (0.100) 8.69 (0.115) 7.53 (0.133) 6.51 (0.154) 12.05 (0.051) 16.35 (0.051) 16.35 (0.051) 16.35 (0.051)	U-Factors 8-in. Concre Lightly Reinforced 6.84 (0.146) 6.28 (0.159) 5.25 (0.191) 4.34 (0.230) MU-Factor 8-in. Concre Lightly Reinforced 7.85 (0.127) 7.32 (0.137) 6.31 (0.147)	s (Btu/hr-f te Masonry Heavily Reinforced 4.40 (0.227) 4.10 (0.244) 3.83 (0.261) 3.34 (0.299) 3.34 (0.299) 3.34 (0.299) 3.34 (0.299) 3.32 (0.321) Ors (Btu/hu Heavily Reinforced 5.12 (0.195) 4.81 (0.208) 4.81 (0.208)	Fully Grouted 2.07 (0.483) 1.96 (0.509) 1.87 (0.535) 1.78 (0.559) 1.75 (0.559) 1.65 (0.605) r-ft2-oFJ Fully Grouted

Numerous tools are available to determine the thermal properties of masonry wall assemblies.

The NCMA Thermal Catalog includes all relevant thermal properties for various unit configurations.

Prescriptive Path

4	A B	c	D	E	F	G H	1
1	E	CON	IONAL	E MASONR	Y		
2	Sustainable Conc				ipes		
3							
4	NCMA R-Value / U-Fac	tor / Heat Capacity	Calculato	r			
5	User Input Page (3 Lay	er Unit)					
6							
7	Please enter inputs be	low for the wall ass	embly				
8							
9	Step 2: CMU Descriptio	<u>n</u>					
	Description:						
11	NOTE: Enter descriptio Step 3: CMU Nominal		iaea in co	Specified			
	Width (in.)	Constanting of the local sectors		-0.375			
	Height (in.)			-0.375			
	Length (in.)			-0.375			
16	congentury			-0.313			
	Step 4: Face Shell Thick	mess					
	Face 1 Thickness (in.)						
19	Face 2 Thickness (in.)						
20							Calculate
21	Step 4: Web Information	on					Web Are
22	Web 1 Thickness (in.)			Web 1 Height (in	n.)		0
23	Web 2 Thickness (in.)			Web 2 Height (i	n.)		0
24	Web 3 Thickness (in.)			Web 3 Height (in	n.)		0
	Web 4 Thickness (in.)			Web 4 Height (i	n.)		0
26						Total	0
27							
28		l web area above w	II overide	individial web e	ntries.		
29							
30		sistivity					_
31	CMU Density (lb/ft ²)			Thermal Resisti	rity	1.67	
32	- Option - specify cond						
33	NOTE - Entering a spec	ific thermal conduc	tivity will	override value co	icuated base	d on density	
34 35	Step 8: Cell Fill						
36					Air		
37	- if insulation, enter R						
	NOTE: This will be used	for the fill of all cells	not grou	ted.			
39							

CONCRET ASSOCIAT	
alculator Output	
8 inch exterior	
8 x 8 x 16	inch
135	lb/ft ³
0.11	
Partially Grouted	Percent Grouted = 17%
Unfilled	
22.875	in.2/ft2
None	
styrene (XPS) Insulation, Metal Fu	rring and 1/2 inch Gypsum Wallboa
0.68	
0.17	
1.07	
11.1	
13.02	
0.0768	
9.2	
	Association Association adulator Output Binch exterior Binch exterior Binch exterior Binch exterior Binch exterior Binch exterior Difference

Numerous tools are available to determine the thermal properties of masonry wall assemblies.

The NCMA Thermal Calculator allows users to quickly determine thermal properties for various wall assemblies.

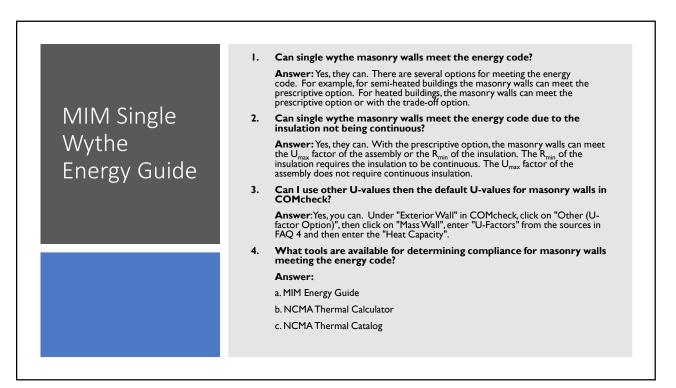
Heat capacity values are provided in NCMA TEK 6-16A.

31

Pr	resci	riptiv	ve P	ſ			
				12" C	MU Expose	ed on Both F	aces
					density ¹ , pcf	grout spacing, in.	U - factor ^{2,3,4}
				conventional ⁵	135	48	0.224
					125	48	0.200
					115	48	0.178
					105	48	0.160
	N	leets Cod	le:	A- Block ⁵	135 125	48	0.160 0.146
		1			125	48 48	0.146
	U,	$_{assembly}^{1} \leq U_{i}$	max		115	48	0.134
t i		-		H - Blocks	105	48	0.124
		U _{max}		biock-	125	48	0.121
1	7		7	1	115	48	0.114
	Zone 5	Zone 6	Zone 7	11 1	105	48	0.106
				HiR	135	48	0.110
Commercial	0.090	0.080	0.071	11 1	125	48	0.100
					115	48	0.090
High-Rise					105	48	0.080
	0.080	0.071	0.071	Hi R H	135	48	0.083
Residential					125	48	0.074
¹ Calculate II-Va	lue (NCMA The	mal Calculator		ן ור	115	48	0.068
Thermal Catalo		mar calculator (ST HEIRIN		105	48	0.062
mermal Catalo	<u>K</u>)			Omni Block	135	48	0.038
					125	48	0.037
					115	48	0.037
				Footnote 2: Weather C Footnote 3: Cell fill is p	limate: Zone 5 - U _{max} =0.0 solyurethane foamed-in-p ond beam every 120 inch	48 nsity of 135 pcf or greater 90, Zone 6 - U _{max} =0.080, Zon lace, R value of 5.9 per inch es	0.036 e 7 - U _{max} =0.071

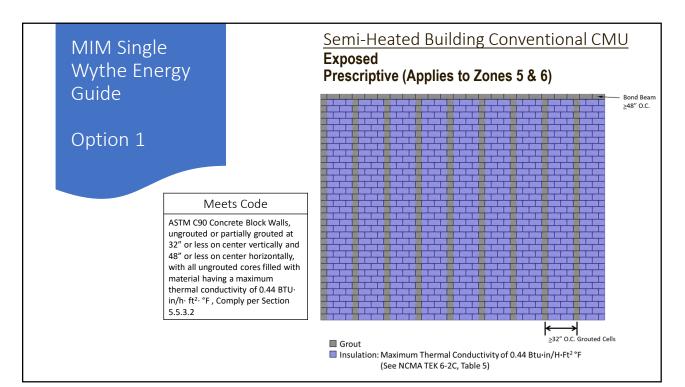
Numerous tools are available to determine the thermal properties of masonry wall assemblies.

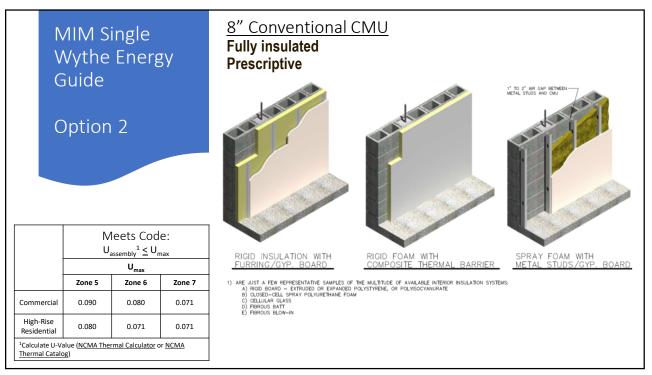
The NCMA Thermal Calculator allows users to quickly determine thermal properties for various wall assemblies.

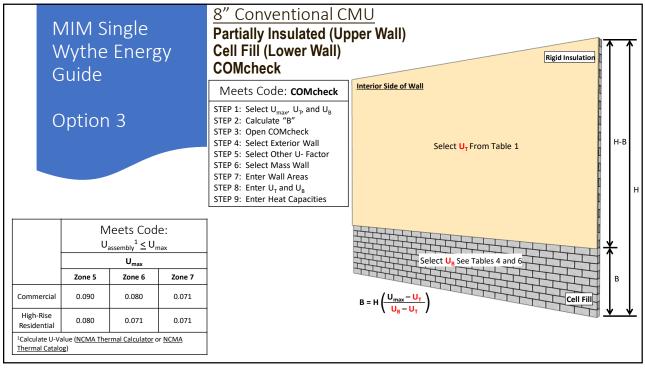

Heat capacity values are provided in NCMA TEK 6-16A.

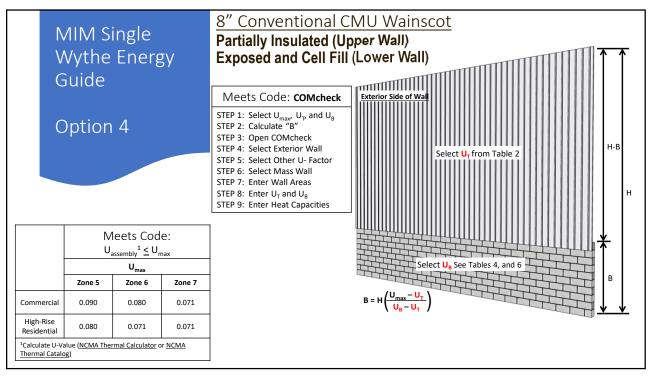
-	Frade	e-Off Opti	on	
ww.energyc	odes.gov/adoption/states/mi	ichigan	ycodes.gov/adoption/states/michigan	
		HTM D HTML Tutorials for th 😙 LARA - Calendar of M	Details - Doi 🎋 HTML Tutorials HTM 📋 HTML Tutorials for th 👋 LARA - Calendar of	M 🙋 reCA
	Approved Compliance Tools: Approximate	Commercial Michigan Energy Code 🔁 Can use COMcheck Equivalent to ASHRAE 90,1-2013	ergy Codes Program	-
	Energy Efficiency:	-	/lichigan	Popu
	Effective Date:	Sep. 20, 2017	urrent News:	Status of !
	Adoption Date:	May. 23, 2017	ommercial energy code became effective September 20, 2017.	
	Code Enforcement:	Mandatory	Commercial Residential Code Change	State Rela
	DOE Determination:	ASHRAE 90.1-2007: Yes ASHRAE 90.1-2010: Yes ASHRAE 90.1-2013: Yes	Current Code: ASHRAE Standard 90.1-2013 with Amendments	Lara De Michios Midwes
		Energy cost savings for Michigan resulting from the state updating its commercial and residential building energy codes in accordance with federal law are significant, estimated to be on the order of nearly \$230 million annually by 2030. Michigan DDE Determination Letter	Amendments / Additional State Code Information: . A local Code Information: . A local Code Information . A local Code Information	Program a State Cont Primary Invin J.

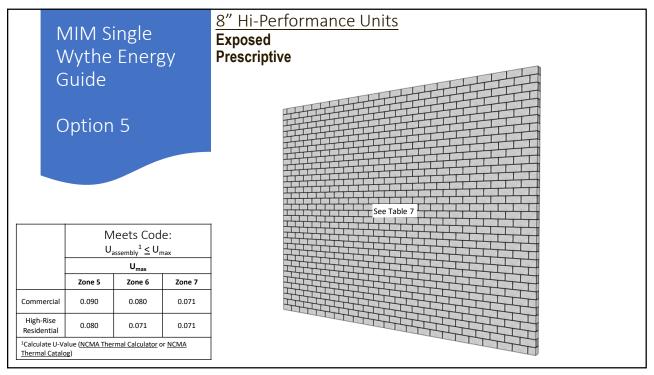
The U.S. Department of Energy permits COMcheck to be used to demonstrate ASHRAE 90.1 code compliance.

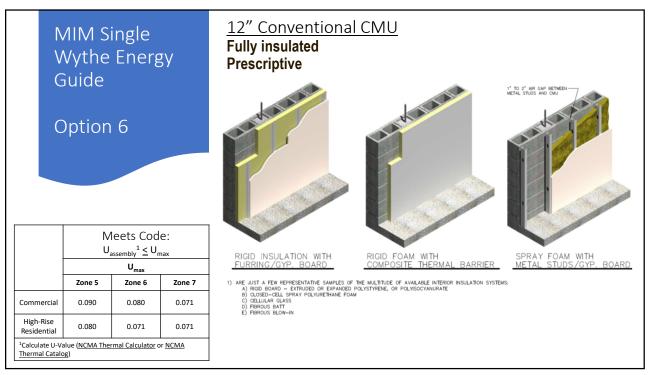

Envelope tradeoffs are defined to allow trades to be made between various parts of the building envelope.

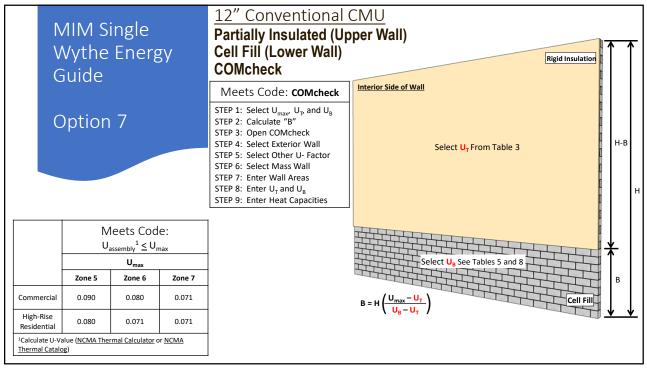

These will be discussed in our Guide.

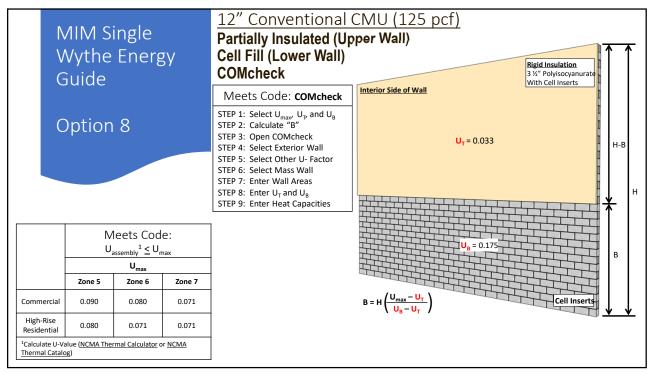


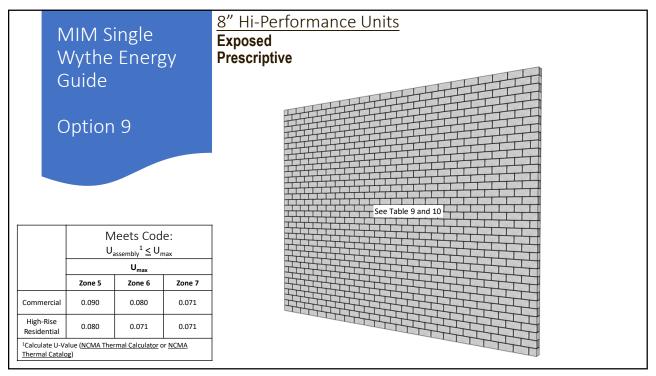

MIM Single Wythe Energy Guide

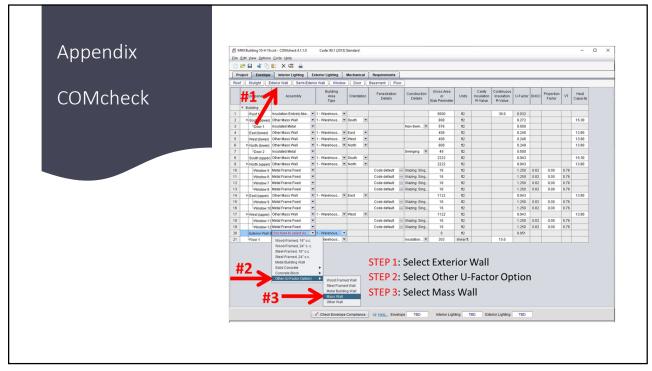

			EN	IERGY	GUIDE		
			Insulatio	n	Meets C	ode	
сми	Option	Exterior Face	Interior Face	Cell	Prescriptive	Trade- Off	Tools
			Se	mi-Heate	d Buildings		
8" Conventional	1	exposed	exposed	full height	yes		NCMA TEK 6-2C (Table 5)
12" Conventional	1	exposed	exposed	full height	yes		NCMA TEK 6-2C (Table 5)
				Heated B	uildings		
8" Conventional	<u>2</u>	exposed	full height		yes		NCMA Thermal Calculator
	<u>3</u>	exposed	upper height	lower height		yes	Tables 1, 4, and 6, <u>NCMA TEK 06-16A</u> , COMcheck
	4	exposed	exposed	full height		yes	Tables 2, 4 , and 6, <u>NCMA TEK 06-16A</u> , COMcheck
8"Hi- Performance	5	exposed	exposed		yes		See Table 7
12" Conventional	<u>6</u>	exposed	full height		yes		NCMA Thermal Calculator
	Z	exposed	upper height	lower height		yes	Tables 3, 5, and 8, <u>NCMA TEK 06-16A</u> , COMcheck
	<u>8</u>	exposed	upper height	full height		yes	See Option 8, <u>NCMA TEK 06-16A</u> , COMcheck
12"Hi- Performance	9	exposed	exposed		ves		See Tables 9 and 10

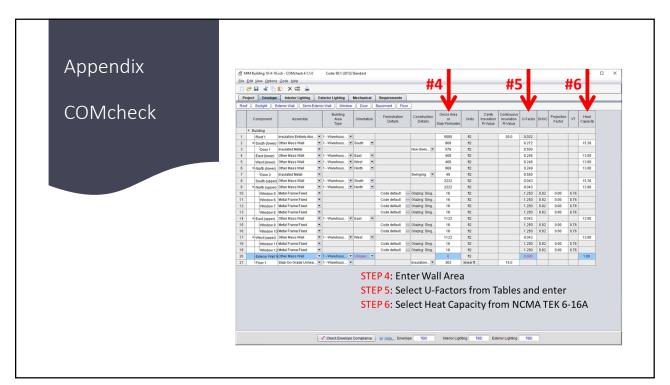












Appendix

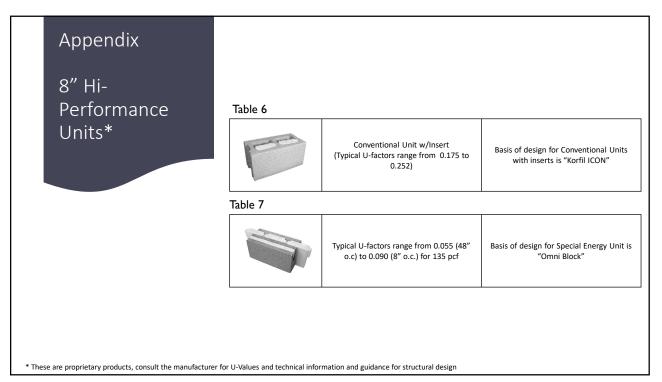
Interior Face Insulation

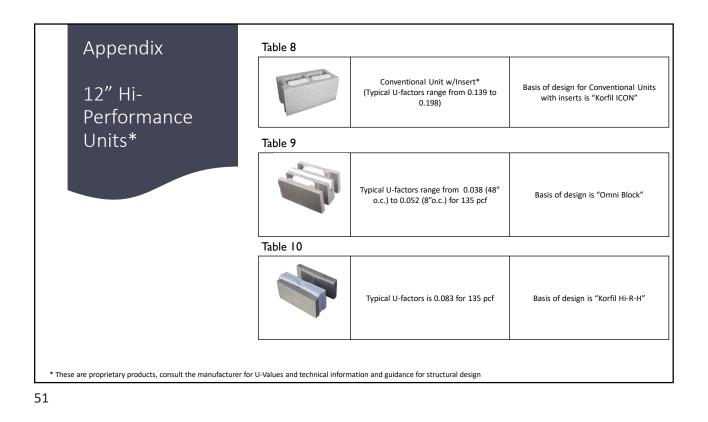
Table I				
8" CMU	polyisocy	anurate, H	D (interior	face)
DENSITY	2"	2-1/2"	3"	3-1/2'
105	0.061	0.051	0.043	0.038
115	0.062	0.051	0.043	0.038
125	0.062	0.051	0.044	0.038
135	0.062	0.051	0.044	0.038

Table 2

Consult the Pre-Engineered Metal Frame Building Manufacturer for U-Value of Metal Panels.

Table 3


12" CMU	polyisocy	anurate, H	D (interior	face)
DENSITY	2"	2-1/2"	3"	3-1/2"
105	0.060	0.050	0.042	0.037
115	0.060	0.050	0.043	0.037
125	0.060	0.050	0.043	0.037
135	0.061	0.050	0.043	0.037


Appendix	Table	4-														
, topoending	Table	4 a													POLYURE	THANE
	8" CMU							rethane fo								
	DENSITY	8" 0.529	16" 0.355	24" 0.298	32" 0.269	40" 0.251	48" 0.240	56" 0.231	64" 0.225	72" 0.220	80" 0.216	88" 0.213	96" 0.210	104" 0.208	0.206	120" 0.205
8" CMU Cell Fill	105 115	0.529	0.355	0.323	0.269	0.251	0.240	0.231	0.225	0.220	0.216	0.213	0.210	0.208	0.206	0.205
	125	0.581	0.408	0.351	0.322	0.305	0.293	0.285	0.279	0.240	0.242	0.268	0.265	0.262	0.261	0.259
Inculation	135	0.606	0.437	0.381	0.353	0.336	0.325	0.317	0.311	0.306	0.303	0.300	0.297	0.295	0.293	0.292
Insulation	T .I.I.	41.														
(U-factors)	Table	4D													AMINO	OPLAST
(0-actors)	8" CMU					BAR SPA	CING, ami	noplast foa	med-in-pl	ace, R=4.6	per in. (cel	l fill)				
	DENSITY	8"	16"	24"	32"	40"	48"	56"	64"	72"	80"	88"	96"	104"	112"	120"
	105	0.529	0.358	0.301	0.272	0.255	0.243	0.235	0.229	0.224	0.220	0.218	0.215	0.212	0.211	0.209
	115	0.555	0.383	0.326	0.297	0.280	0.269	0.260	0.254 0.283	0.249	0.246	0.243	0.240	0.238	0.236	0.234
	125 135	0.581 0.606	0.410 0.439	0.354	0.325	0.308	0.297	0.289	0.283	0.278	0.274	0.271	0.268	0.266	0.264	0.263
	Table	τι					BAR SPA	CING, perli	te, R=3.12	per in. (cel	II fill)				P	ERLITE
	DENSITY	8"	16"	24"	32"	40"	48"	56"	64"	72"	80"	88"	96"	104"	112"	120"
	105	0.529	0.362	0.307	0.279	0.262	0.251	0.243	0.237	0.232	0.229	0.226	0.223	0.221	0.219	0.218
	115	0.555	0.388	0.332	0.304	0.287	0.276	0.268	0.262	0.257	0.254	0.251	0.248	0.246	0.244	0.243
	125 135	0.581	0.415	0.359	0.332	0.315	0.304	0.296	0.290	0.285	0.282	0.279	0.276	0.274	0.272	0.271
	135	0.606	0.443	0.389	0.362	0.346	0.335	0.327	0.321	0.317	0.313	0.310	0.308	0.306	0.304	0.304
	Table	4d													VERMI	CULITE
	8" CMU					E	AR SPACIN	NG, vermic	ulite, R=2.2	27 per in. (cell fill)					
	DENSITY	8"	16"	24"	32"	40"	48"	56"	64"	72"	80"	88"	96"	104"	112"	120"
	105	0.529	0.367	0.314	0.287	0.271	0.260	0.252	0.246	0.242	0.238	0.236	0.233	0.231	0.229	0.228
	115 125	0.555	0.393 0.419	0.339	0.312	0.295	0.284	0.277	0.271 0.298	0.266 0.294	0.263	0.260	0.257	0.255	0.253 0.281	0.252
	125	0.581 0.606	0.419	0.366	0.339	0.323	0.312	0.304	0.298	0.294	0.290	0.288	0.285	0.283	0.281	0.280
	135	0.000	040	5.355	5.505	0.555	0.542	5.555	0.525	0.525	0.521	5.515	0.510	0.314	0.512	0.511

Appendix

12" CMU Cell Fill Insulation (U-factors)

12" CMU				B/		IG nolvur	ethane fo	amed-in-	nlace R=	9 ner in	(cell fill)			POLYUR	
DENSITY	8"	16"	24"	32"	40"	48"	56"	64"	72"	80"	88"	96"	104"	112"	120
105	0.427	0.277	0.227	0.202	0.187	0.177	0.170	0.164	0.160	0.157	0.154	0.152	0.150	0.148	0.14
115	0.446	0.296	0.246	0.221	0.206	0.196	0.188	0.183	0.179	0.176	0.173	0.170	0.168	0.167	0.16
125	0.466	0.316	0.267	0.242	0.227	0.217	0.210	0.204	0.200	0.197	0.194	0.192	0.190	0.188	0.18
135	0.485	0.339	0.290	0.265	0.250	0.241	0.234	0.228	0.224	0.221	0.219	0.216	0.214	0.213	0.2
Table	5b													AMINO	ριδς
2" CMU					BAR SPA	CING, ami	noplast foa	med-in-pl	ace, R=4.6	per in. (cel	l fill)				
DENSITY	8"	16"	24"	32"	40"	48"	56"	64"	72"	80"	88"	96"	104"	112"	12
105	0.427	0.278	0.229	0.204	0.189	0.179	0.172	0.167	0.163	0.160	0.157	0.155	0.153	0.151	0.1
115	0.446	0.297	0.248	0.223	0.208	0.198	0.191	0.185	0.181	0.178	0.176	0.173	0.171	0.169	0.1
125	0.466	0.317	0.268	0.244	0.229	0.219	0.212	0.207	0.202	0.199	0.197	0.194	0.192	0.191	0.1
135	0.485	0.340	0.291	0.267	0.252	0.243	0.236	0.231	0.227	0.223	0.221	0.218	0.217	0.215	
Table		0.340	0.291	0.267	0.252							0.218	0.217		0.2
Table	5c					BAR SPA	CING, perli	te, R=3.12	per in. (ce	ll fill)	0.221			P	0.2
Table	5c 8"	16"	24"	32"	40"	BAR SPA	CING, perli 56"	te, R=3.12 64"	per in. (ce 72"	ll fill) 80"	0.221 88"	96"	104"	P 112"	0.2 ERLIT
Table	5c 8" 0.427	16 " 0.281	24 " 0.233	32" 0.209	40'' 0.194	BAR SPA 48" 0.184	CING, perli 56 " 0.178	te, R=3.12 64" 0.172	per in. (ce 72" 0.168	II fill) 80" 0.165	0.221 88" 0.163	96" 0.160	104 " 0.158	P 112" 0.157	0.2 ERLIT 12 0.1
Table 12" CMU DENSITY 105 115	5c 8"	16"	24"	32"	40"	BAR SPA	CING, perli 56"	te, R=3.12 64"	per in. (ce 72"	ll fill) 80"	0.221 88"	96"	104"	P 112"	0.2 ERLIT 12 0.1 0.1
Table	5c 8" 0.427 0.446	16 " 0.281 0.300	24 " 0.233 0.252	32" 0.209 0.227	40" 0.194 0.212	BAR SPA 48" 0.184 0.203	CING, perli 56" 0.178 0.196	ite, R=3.12 64" 0.172 0.191	per in. (ce 72" 0.168 0.187	80" 0.165 0.183	0.221 88" 0.163 0.181	96" 0.160 0.178	104 " 0.158 0.177	P 112" 0.157 0.175	0.2 ERLIT 0.2 0.2
Table 12" CMU DENSITY 105 115 125 135	5c 0.427 0.446 0.466 0.485	16" 0.281 0.300 0.320	24 " 0.233 0.252 0.272	32" 0.209 0.227 0.248	40" 0.194 0.212 0.233	BAR SPA 48" 0.184 0.203 0.224	CING, perli 56" 0.178 0.196 0.217	te, R=3.12 64" 0.172 0.191 0.211	per in. (ce 72" 0.168 0.187 0.207	80" 0.165 0.183 0.204	0.221 88" 0.163 0.181 0.202	96" 0.160 0.178 0.199	104" 0.158 0.177 0.197	P 112" 0.157 0.175 0.196	0.2 ERLIT 12 0.1 0.1 0.1
Table 12" CMU DENSITY 105 115 125	5c 0.427 0.446 0.466 0.485	16" 0.281 0.300 0.320	24 " 0.233 0.252 0.272	32" 0.209 0.227 0.248	40" 0.194 0.212 0.233	BAR SPA 48" 0.184 0.203 0.224	CING, perli 56" 0.178 0.196 0.217	te, R=3.12 64" 0.172 0.191 0.211	per in. (ce 72" 0.168 0.187 0.207	80" 0.165 0.183 0.204	0.221 88" 0.163 0.181 0.202	96" 0.160 0.178 0.199	104" 0.158 0.177 0.197	P 112" 0.157 0.175 0.196 0.220	0.2 ERLIT 0.1 0.1 0.2
Table 12" CMU DENSITY 105 115 125 135	5c 0.427 0.446 0.466 0.485	16" 0.281 0.300 0.320	24" 0.233 0.252 0.272	32" 0.209 0.227 0.248	40" 0.194 0.212 0.233 0.257	BAR SPA 48" 0.184 0.203 0.224 0.247	CING, perli 56" 0.178 0.196 0.217	te, R=3.12 64" 0.172 0.191 0.211 0.235	per in. (ce 72" 0.168 0.187 0.207 0.231	80" 0.165 0.183 0.204 0.228	0.221 88" 0.163 0.181 0.202	96" 0.160 0.178 0.199	104" 0.158 0.177 0.197	P 112" 0.157 0.175 0.196 0.220	0.2 ERLIT 0.1 0.1 0.2
Table 12" CMU DENSITY 105 115 125 135 Table	5c 0.427 0.446 0.466 0.485	16" 0.281 0.300 0.320	24" 0.233 0.252 0.272	32" 0.209 0.227 0.248	40" 0.194 0.212 0.233 0.257	BAR SPA 48" 0.184 0.203 0.224 0.247	CING, perli 56" 0.178 0.217 0.217 0.241 NG, vermic 56"	te, R=3.12 64" 0.172 0.191 0.211 0.235	per in. (ce 72" 0.187 0.207 0.231 27 per in. (72"	80" 0.165 0.183 0.204 0.228	0.221 88" 0.163 0.181 0.202	96" 0.160 0.178 0.199	104" 0.158 0.177 0.197	P 112" 0.157 0.175 0.196 0.220	0.2 ERLIT 12 0.1 0.1 0.2 MICUL
Table 12" CMU DENSITY 105 115 125 135 Table 12" CMU DENSITY 105	5c <u>8"</u> 0.427 0.446 0.466 0.485 5d <u>8"</u> 0.427	16" 0.281 0.300 0.320 0.342 16"	24" 0.233 0.252 0.272 0.295 24"	32" 0.209 0.227 0.248 0.271 0.271	40" 0.194 0.212 0.233 0.257 40"	BAR SPA 48" 0.184 0.203 0.224 0.247 BAR SPACI 8AR SPACI 48" 0.190	CING, perli 56" 0.178 0.217 0.241 NG, vermic 56" 0.184	te, R=3.12 64" 0.172 0.211 0.235 ulite, R=2. 64" 0.178	per in. (ce 72" 0.168 0.187 0.207 0.231 27 per in. (72" 0.174	II fill) 80" 0.165 0.183 0.204 0.228 cell fill) 80" 0.171	0.221 88" 0.163 0.181 0.202 0.226 88" 0.169	96" 0.160 0.178 0.199 0.223 96" 0.167	104" 0.158 0.177 0.197 0.222 104"	P 112" 0.157 0.175 0.196 0.220 VERN 112" 0.163	0.2 ERLIT 0.1 0.1 0.2 MICUL 12 0.1
Table 12" CMU DENSITY 105 115 125 135 Table 12" CMU DENSITY 105 115 135	5c <u>8"</u> 0.427 0.446 0.466 0.485 5d <u>8"</u> 0.427 0.446	16" 0.281 0.300 0.320 0.342 16" 0.285 0.303	24" 0.233 0.252 0.272 0.295 24" 0.238 0.256	32" 0.209 0.227 0.248 0.271 32" 0.214 0.214 0.232	40" 0.194 0.212 0.233 0.257 40" 0.200 0.218	BAR SPA 48" 0.184 0.203 0.224 0.247 BAR SPACI 88R SPACI 48" 0.190 0.208	CING, perli 56" 0.178 0.217 0.241 NG, vermic 56" 0.184 0.202	te, R=3.12 64" 0.172 0.191 0.211 0.235 ulite, R=2. 64" 0.178 0.196	per in. (ce 72" 0.168 0.187 0.207 0.231 27 per in. (72" 0.174 0.193	II fill) 80" 0.165 0.183 0.204 0.228 cell fill) 80" 0.171 0.189	0.221 88" 0.163 0.181 0.202 0.226 88" 0.169 0.187	96" 0.160 0.178 0.199 0.223 96" 0.167 0.185	104" 0.158 0.177 0.222 104" 0.165 0.183	P 112" 0.157 0.175 0.196 0.220 VERN 112" 0.163 0.181	0.2 ERLITI 0.1 0.1 0.1 0.1 0.2 MICULI 12 0.1 0.1 0.1
Table 12" CMU DENSITY 105 115 125 135 Table 12" CMU DENSITY 105	5c <u>8"</u> 0.427 0.446 0.466 0.485 5d <u>8"</u> 0.427	16" 0.281 0.300 0.320 0.342 16"	24" 0.233 0.252 0.272 0.295 24"	32" 0.209 0.227 0.248 0.271 0.271	40" 0.194 0.212 0.233 0.257 40"	BAR SPA 48" 0.184 0.203 0.224 0.247 BAR SPACI 8AR SPACI 48" 0.190	CING, perli 56" 0.178 0.217 0.241 NG, vermic 56" 0.184	te, R=3.12 64" 0.172 0.211 0.235 ulite, R=2. 64" 0.178	per in. (ce 72" 0.168 0.187 0.207 0.231 27 per in. (72" 0.174	II fill) 80" 0.165 0.183 0.204 0.228 cell fill) 80" 0.171	0.221 88" 0.163 0.181 0.202 0.226 88" 0.169	96" 0.160 0.178 0.199 0.223 96" 0.167	104" 0.158 0.177 0.197 0.222 104"	P 112" 0.157 0.175 0.196 0.220 VERN 112" 0.163	0.2 ERLITI 0.1 0.1 0.1 0.1 0.1 0.2 MICULI 12 0.1 0.1 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2

