HIGH PERFORMANCE QUALITIES

- Architectural
- Structural
- Energy
- Fire
- Sound
- Moisture
- Air

For additional information on high performance qualities of masonry walls, see "Mass Benefits".

NOTES

1) MOISTURE MANAGEMENT: THIS SET OF DETAILS CALLS FOR THE USE OF AN INTEGRAL WATER REPELLENT (IWR) ADDED TO BOTH THE UNITS AND THE MORTAR. ADDITIONALLY, AFTER CLEANING A COMPATIBLE, BREATHABLE, FIELD-APPLIED WATER REPELLENT SHALL ALSO BE FIELD APPLIED.

2) JOINT TOOLING SHOULD BE PERFORMED ONLY WHEN THE MORTAR IS "THUMBPRINT HARD". THE TIME OF TOOLING IS ESPECIALLY IMPORTANT FOR MORTAR AND UNITS CONTAINING INTEGRAL WATER REPELLENTS.

5) FOR PLACING CONTROL JOINTS (C.J.s), TWO OPTIONS ARE AVAILABLE:
 A) AWAY FROM THE OPENINGS (PREFERRED); SEE SHEETS A–10.1, AND A–10.2
 B) AT THE OPENINGS: SEE SHEETS A–11.1, A–11.2 AND A–11.3

INDEX – 8" SINGLE WYTHE CMU

A–1.0 COVER SHEET
A–1.1 GENERIC BUILDING ISOMETRIC
A–1.2 WALL SECTION
A–1.3 BASE DETAIL
A–1.4.1 SHORT SPAN MASONRY Lintel DETAIL
A–1.4.2 SHORT SPAN DOUBLE ANGLE UNTIL DETAIL
A–1.4.3 SHORT SPAN Precast Concrete Unite DETAIL
A–1.5.1 LONG SPAN MASONRY Lintel DETAIL
A–1.5.2 LONG SPAN NARROW FLANGE 8" STEEL Lintel DETAIL
A–1.5.3 LONG SPAN WIDE FLANGE 8" STEEL Lintel DETAIL
A–1.5.4 LONG SPAN 10" WIDE FLANGE STEEL UNTIL DETAIL
A–1.5.5 LONG SPAN HSS STEEL Lintel DETAIL
A–1.6.1 Precast sill DETAIL
A–1.6.2 Metal sill DETAIL
A–1.7 TALL PARAPET DETAIL
A–9 CONTROL JOINT DETAILS
A–10.1 REINFORCED MASONRY OPENING W/ CONTROL JOINTS
A–10.2 REINFORCED MASONRY OPENING W/ CONTROL JOINTS FOR STEEL LINTELS
A–11.1 SLIP PLANE @ MASONRY LINTELS
A–11.2 SLIP PLANE @ STEEL (WIDE FLANGE) Lintel
A–11.3 SLIP PLANE @ STEEL (HSS) Lintel
A–12 ADDITIONAL CONTROL LAYER INFORMATION
A–13.1 INSULATION OPTIONS FOR INTERIOR SURFACE OF EXTERIOR WALL
A–13.2 INSULATION OPTIONS FOR INTERIOR SURFACE OF EXTERIOR WALL INDUSTRIAL/WAREHOUSE
A–14 UPPER WALL/LOWER ROOF FLASHING DETAIL
Sheet Metal Coping

Top of Masonry Wall

Top of Bond Beam

8" CMU

Integral Water Repellant (in CMU and Mortar) and a Post-Cleaning Field-Applied Breathable Water Repellant

Insulation (Loose Fill or Inserts)

Ladder-Type Horizontal Joint Reinforcement Spaced @ 18" O.C.

Paint (can function as an Air Barrier, see Sheet A-12, Note #1)

Tool Mortar Joints to a Concave Profile

Fin. Floor

Grade

WALL SECTION

1

A-1
TOOL MORTAR JOINT TO A CONCAVE PROFILE

INTEGRAL WATER REPELLENT (IN CMU AND MORTAR) AND A POST-CLEANING FIELD APPLIED WATER REPELLENT

8" CMU

INSULATION (LOOSE FILL OR INSERTS)

PAINT (CAN FUNCTION AS AN AIR BARRIER, SEE SHEET A-12, NOTE #1)

LADDER-TYPE HORIZONTAL JOINT REINFORCEMENT SPACED @ 18" O.C.

INSULATED EXPANSION JOINT MATERIAL

DRAINAGE MATERIAL

CONCRETE SLAB

PAN FLASHING SYSTEM (WEEP INSTALLED FLUSH)

FINISH GRADE

CMU GROUTED SOLID BELOW GRADE

NOTE: TOP OF CONCRETE SLAB TO BE ABOVE PAN FLASHING, BOTH OF WHICH ARE TO BE ABOVE FINISH GRADE.

BASE DETAIL

A-2

REINFORCED CELL PICTURE
NOTES:
1) Lintel units and open bottom units are not available with split-face CMU, therefore the detail shows a smooth face unit.

2) Unprotected aluminum door and window frames can interact with cement-based materials and incur damage. See PCA "Aluminum Frames in Masonry Walls" for recommendations.

ISOMETRIC VIEW

SECTION VIEW

8" CMU
Ladder-type horizontal joint reinforcement spaced @ 16" O.C.
Pan flashing system
Lintel unit (w/ reinf, per structural design) grouted solid (NOTE #1)
Paint (can function as an air barrier, see sheet A-12, NOTE #1)
Insulation (loose fill or inserts)
Drainage material

NOTE: Masonry lintel may be precast or field assembled
1) CONTINUE PAN FLASHING SYSTEM A MINIMUM OF ONE CELL BEYOND BOTH JAMB EDGES OF THE OPENING.

2) UNPROTECTED ALUMINUM DOOR AND WINDOW FRAMES CAN INTERACT WITH CEMENT-BASED MATERIALS AND INCREASE THE RISK OF CORROSION. SEE PCA "ALUMINUM FRAMES IN MASONRY WALLS" FOR RECOMMENDATIONS.

NOTES:

8" CMU

LADDER-TYPE HORIZONTAL JOINT REINFORCEMENT
SPACED 16" O.C. AND IN 1ST AND 2ND BED JOINTS
ABOVE PAN FLASHING FROM C.J. TO C.J.
(SEE SHEET A-10.2)

DRAINAGE MATERIAL

PAINT (CAN FUNCTION AS AN AIR BARRIER, SEE SHEET A-12, NOTE #1)

GROUT CORNS AND HEAD JOINTS SOLID

INSULATION (LOOSE FILL OR INSERTS)

SHORT SPAN DOUBLE ANGLE STEEL LINTEL

ISOMETRIC VIEW

SECTION VIEW

3B A-1

The decision to utilize this information is not within the purview of the MIIM, and persons making use of this information do so at their own risk. MIIM makes no representation or warranties, expressed or implied, with respect to the accuracy or suitability of this information. MIIM and its members disclaim liability for damages of any kind, including any special, indirect, incidental, or consequential damages, which may result from the use of this information. This information is not to be interpreted as indicating compliance with, or waiver of, any provision of any applicable building code, ordinance, standard or law.
NOTES:
1) NOTCH ENDS OF PRECAST LINTEL AS REQUIRED FOR VERTICAL REINFORCEMENT.

2) UNPROTECTED ALUMINUM DOOR AND WINDOW FRAMES CAN INTERACT WITH CEMENT-BASED MATERIALS AND INFLICT DAMAGE. SEE PCA "ALUMINUM FRAMES IN MASONRY WALLS" FOR RECOMMENDATIONS.

ISOMETRIC VIEW

SECTION VIEW

SHORT SPAN PRECAST CONCRETE LINTEL

NOTE: FOR AESTHETIC REASONS, THIS DETAIL IS NORMALLY USED ONLY ON WALLS CONSTRUCTED OF STANDARD UNITS, NOT THOSE WITH ARCHITECTURAL CMU UNITS.
NOTES:
1) Lintel units and open bottom units are not available with split-face CMU. Therefore the detail shows a smooth face unit.

ISOMETRIC VIEW

SECTION VIEW

8" CMU
Ladder-type horizontal joint reinforcement spaced @ 16" O.C.
Pan flashing system

Grout solid (in one-lift) total number of courses required per structural design (2 courses depicted in this detail) (note #1)

Paint (can function as an air barrier, see sheet A-12, note #1)
Insulation (loose fill or inserts)
Drainage material
Lintel unit (w/ reinf, per structural design)

NOTE: Masonry lintel may be precast or field assembled

LONG SPAN
MASONRY LINTEL (PREFERRED)

IN CHARGE:
DRAWN: M.W.F.
APPROVED:
NOTE: 06/30/2019
TITLE: LONG SPAN MASONRY LINTEL
SHEET: A-5.1
ISOMETRIC VIEW

SECTION VIEW

NOTES:
1) CONTINUE PAN FLASHING SYSTEM A MINIMUM OF ONE CELL BEYOND BOTH JAMB EDGES OF THE OPENING.

8" CMU

LADDER-TYPE HORIZONTAL JOINT REINFORCEMENT
SPACED @ 16" O.C. AND IN 1ST. AND 2ND. BED JOINTS ABOVE PAN FLASHING FROM C.J. TO C.J. (SEE SHEET A-10.2)

PAN FLASHING SYSTEM

GROUT SOLID (INCLUDING HEAD JOINTS)

FLEXIBLE MEMBRANE FLASHING, FULLY ADHERED

TWO-PIECE FLASHING

SEE ENLARGED DETAIL 6A/A-7

PAINT (CAN FUNCTION AS AN AIR BARRIER, SEE SHEET A-12, NOTE #1)

INSULATION (LOOSE FILL OR INSERTS)

DRAINAGE MATERIAL

SOAPS (BOTH SIDES)

TWO-PIECE FLEXIBLE ANCHOR IN EACH HEAD JOINT. RECEIVER COMPONENT MECHANICALLY FASTENED THROUGH FULLY ADHERED MEMBRANE FLASHING ON EXTERIOR SIDE OF LINTEL

STEEL BEAM LINTEL ASSEMBLY (CORROSION RESISTANT)

STEEL PLATE

TURN UP FLEXIBLE MEMBRANE FLASHING AS END DAMS (BEYOND)

NOTE: WITH THIS DETAIL SOAPS REQUIRE MINIMAL OR NO NOTCHING.

LONG SPAN NARROW FLANGE 8" STEEL LINTEL

(W8 SERIES)
NOTES:

1) CONTINUE PAN FLASHING SYSTEM A MINIMUM OF ONE CELL BEYOND BOTH JAMB EDGES OF THE OPENING.

2) UNPROTECTED ALUMINUM DOOR AND WINDOW FRAMES CAN INTERACT WITH CEMENT-BASED MATERIALS AND INURE DAMAGE. SEE PCA “ALUMINUM FRAMES IN MASONRY WALLS” FOR RECOMMENDATIONS.

LADDER-TYPE HORIZONTAL JOINT REINFORCEMENT SPACED @ 16" O.C. AND IN 1ST. AND 2ND. BED JOINTS ABOVE PAN FLASHING FROM C.J. TO C.J. (SEE SHEET A-10.2)

8" CMU

INSULATION (LOOSE FILL OR INSERTS)

PAN FLASHING SYSTEM

GROUT SOILD (INCLUDING HEAD JOINTS)

FLEXIBLE MEMBRANE FLASHING, FULLY ADHERED

TWO-PIECE FLASHING

SEE ENLARGED DETAIL 6A/A-7

SECTION VIEW

NOTE: WITH THIS DETAIL SOAPS REQUIRE NOTCHING.

LONG SPAN WIDE FLANGE 16" STEEL LINTEL (W16 SERIES)
NOTES:

1) CONTINUE PAN FLASHING SYSTEM A MINIMUM OF ONE CELL BEYOND BOTH JAMB EDGES OF THE OPENING.

2) UNPROTECTED ALUMINUM DOOR AND WINDOW FRAMES CAN INTERACT WITH CEMENT-BASED MATERIALS AND INCUR DAMAGE. SEE PCA "ALUMINUM FRAMES IN MASONRY WALLS" FOR RECOMMENDATIONS.

LADDER-TYPE HORIZONTAL JOINT REINFORCEMENT
SPACED @ 16" O.C. AND IN 1ST. AND 2ND. BED JOINTS ABOVE PAN FLASHING FROM C.J. TO C.J. (SEE SHEET A-10.2)

B" CMU

INSULATION (LOOSE FILL OR INSERTS)
PAN FLASHING SYSTEM

GROUT SOLID (INCLUDING HEAD JOINTS)

FLEXIBLE MEMBRANE FLASHING, FULLY ADHERED

TWO-PIECE FLASHING

SEE ENLARGED DETAIL 86/A-7 (SIMILAR)

DRAINAGE MATERIAL

PAINT (CAN FUNCTION AS AN AIR BARRIER, SEE SHEET A-12, NOTE #1)

SOAPS-(BOTH SIDES)

TWO-PIECE FLEXIBLE ANCHOR IN EACH HEAD JOINT IN EACH SOAP COURSE RECEIVER COMPONENT MECHANICALLY FASTENED THROUGH FULLY ADHERED MEMBRANE FLASHING ON EXTERIOR SIDE OF LINTEL

HSS STEEL Lintel ASSEMBLY (CORROSION RESISTANT)

STEEL PLATE

TURN UP FLEXIBLE MEMBRANE FLASHING AS END DAMS (BEYOND)

LONG SPAN HSS STEEL Lintel DETAIL

4E

A-1

The decision to utilize this information is not within the purview of the MIIM, and persons making use of this information do so at their own risk. MIIM makes no representation or warranties, expressed or implied, with respect to the accuracy or suitability of this information. MIIM and its members disclaim liability for damages of any kind, including any special, indirect, incidental, or consequential damages, which may result from the use of this information. This information is not to be interpreted as indicating compliance with, or waiver of, any provision of any applicable building code, ordinance, standard or law.
NOTE: MULTIPLE PIECE SILLS MAY REQUIRE MASONRY ANCHORS IN THE HEAD JOINTS.

SECTION VIEW

SEALANT OVER BACKER ROD AT JAMB/SILL INTERFACE

PRECAST OR STONE SILL

FLEXIBLE MEMBRANE FLASHING, FULLY ADHERED

DRIPS AT HEAD AND/OR BED JOINTS

1" MIN.

LADDER-TYPE HORIZONTAL JOINT REINFORCEMENT SPACED @ 16" O.C.

8" CMU

SECTION VIEW

FLEXIBLE MEMBRANE FLASHING WITH END DAMS

4" CMU (SOLID)

PROVIDE SOLID SUPPORT UNDER FLASHING

PAINT (CAN FUNCTION AS AN AIR BARRIER, SEE SHEET A-12, NOTE #1)

INSULATION (LOOSE FILL OR INSERTS)

The decision to utilize this information is not within the purview of the MIM, and persons making use of this information do so at their own risk. MIM makes no representation or warranties, expressed or implied, with respect to the accuracy or suitability of this information. MIM and its members disclaim liability for damages of any kind, including any special, indirect, incidental or consequential damages, which may result from the use of this information. This information is not to be interpreted as indicating compliance with, or waiver of, any provision of any applicable building code, ordinance, standard or law.
NOTES:

1) TRADITIONALLY, CONTROL JOINTS HAVE TYPICALLY BEEN LOCATED AT OR VERY CLOSE TO THE SIDES OF UNREINFORCED OPENINGS. HOWEVER IT IS THE MWU'S PREFERENCE FOR CONTROL JOINTS TO BE LOCATED AWAY FROM THE EDGE OF OPENINGS AND TO ADD REINFORCEMENT AROUND THE OPENINGS.

2) FOR BEST PERFORMANCE, THE VERTICAL REINFORCEMENT SHOULD BE PREFERABLY PLACED IN THE CELL IMMEDIATELY ADJACENT TO THE OPENING. HOWEVER IF THIS CELL IS CONGESTED, THE VERTICAL REINFORCEMENT MAY BE PLACED IN THE 2nd. CELL FROM THE OPENING.

3) ON LONG SPAN OPENINGS IT IS RECOMMENDED TO GROUT BOTH THE 1st. AND 2nd. CELLS FROM THE OPENING TO PROVIDE ADDITIONAL RESISTANCE FOR ATTACHING THE DOOR OR WINDOW FRAME.

4) FOR CONTROL JOINT DETAILS SEE SHEET A-9.

5) FOR ADDITIONAL INFORMATION ON CONTROL JOINT SPACING/Locations, SEE NCMA TEK 10-3.
NOTES:

1) TRADITIONALLY, CONTROL JOINTS HAVE TYPICALLY BEEN LOCATED AT OR VERY CLOSE TO THE SIDES OF UNREINFORCED OPENINGS. HOWEVER, IT IS THE MMM's PREFERENCE FOR CONTROL JOINTS TO BE LOCATED AWAY FROM THE EDGE OF OPENINGS AND TO ADD REINFORCEMENT AROUND THE OPENINGS.

2) FOR BEST PERFORMANCE, THE VERTICAL REINFORCEMENT SHOULD BE PREFERABLY PLACED IN THE CELL IMMEDIATELY ADJACENT TO THE OPENING. HOWEVER, IF THIS CELL IS CONGESTED, THE VERTICAL REINFORCEMENT MAY BE PLACED IN THE 2nd CELL FROM THE OPENING.

3) ON LONG SPAN OPENINGS IT IS RECOMMENDED TO GROUT BOTH THE 1st AND 2nd CELLS FROM THE OPENING TO PROVIDE ADDITIONAL RESISTANCE FOR ATTACHING THE DOOR OR WINDOW FRAME.

4) FOR CONTROL JOINT DETAILS SEE SHEET A-9.

5) FOR ADDITIONAL INFORMATION ON CONTROL JOINT SPACING/LOCATIONS, SEE NCMA TEK 10-3.
PLAN OF LINTEL/BEARING PLATE

BEARING PLATE

BOTTOM FLANGE (AND WEB) OF LINTEL BEAM

"J" ANCHORS W/ THREADED PROJECTIONS. DO NOT FULLY TIGHTEN NUTS TO ALLOW FOR IN-PLANE MOVEMENT

SLOTTED HOLES IN BEAM FLANGES (NO WELDS)

NOTES:
1) DO NOT WELD STEEL BEAM LINTEL PLATE TO BEARING PLATE (TYPICAL BOTH SIDES).
2) STEEL BEAM TO HAVE SLOTS ON BOTTOM FLANGES TO ALLOW FOR IN-PLANE MOVEMENT.

NOTE: 8" BEARING IS SHOWN AND IS TYPICAL, BUT SHOULD BE INCREASED IF NECESSARY BASED ON STRUCTURAL BEARING CALCULATIONS

STEEL REINFORCEMENT IN SOLID GROUTED CELLS

CONTROL JOINT (BACKER ROD AND SEALANT)

ELEVATION VIEW

NCMA RECOMMENDS WIRE: 24" LONG HORIZONTAL JOINT REINFORCEMENT AT LINTEL BEARING AND TWO COURSES BELOW LINTEL BEARING

OPENING

SLIP PLANE/CONTROL JOINT @ LONG SPAN WIDE FLANGE STEEL LINTEL

ISOMETRIC VIEW

STEEL BEARING PLATE WITH "J" ANCHORS (THREADED ON PROJECTION ABOVE BEARING PLATE)

BACKER ROD AND SEALANT ON BED JOINT ON ALL THREE EXPOSED FACES

FACE SHELL AND GROUT NOT SHOWN TO REVEAL BEARING PLATE AND ANCHORS

JAMB OPENING FACE

NOTE: NO REINFORCEMENT (VERTICAL OR HORIZONTAL) SHALL PASS THROUGH THE CONTROL JOINT.

10B
A-11.2
RIGID INSULATION WITH FURRING/GYP. BOARD

RIGID FOAM WITH COMPOSITE THERMAL BARRIER

SPRAY FOAM WITH METAL STUDS/GYP. BOARD

NOTES:
THE THREE OPTIONS SHOWN ABOVE:

1) ARE JUST A FEW REPRESENTATIVE SAMPLES OF THE MULTITUDE OF AVAILABLE INTERIOR INSULATION SYSTEMS:
 A) RIGID BOARD — EXTRUDED OR EXPANDED POLYSTYRENE, OR POLYSOCYANurate
 B) CLOSED-CELL SPRAY POLYURETHANE FOAM
 C) CELLULAR GLASS
 D) FIBROUS BATT
 E) FIBROUS BLOW-IN

2) DO NOT ADDRESS A VAPOR CONTROL LAYER, AND HAVE VARYING LEVELS OF VAPOR PERMEABILITY. THE DEGREE OF VAPOR PERMEABILITY AND INTERIOR SPACE HUMIDITY SHOULD BE CAREFULLY EVALUATED (DEWPOINT ANALYSIS) IN ORDER TO ACHIEVE PROPER CONDENSATION CONTROL.

3) HAVE NOT BEEN ANALYZED FOR AIR CONTROL LAYER PERFORMANCE. THE OTHER DETAILS IN THIS SET REFLECT AN AIR BARRIER SYSTEM ACHIEVED WITH SPECIFIC MASONRY DETAILING/CONSTRUCTION AND NON-PROPRIETARY COATINGS APPLIED DIRECTLY TO THE CMU (SEE SHEET A-12, NOTE #1). IF AN INTERIOR WALL INSULATION SYSTEM IS INCLUDED IN THE DESIGN, THE USER MAY WISH TO CONSIDER ANOTHER AIR BARRIER SYSTEMS (PERHAPS EVEN UTILIZING COMPONENTS OF THE INTERIOR WALL INSULATION SYSTEM, IF APPLICABLE).

1" TO 2" AIR GAP BETWEEN METAL STUDS AND CMU

INSULATION OPTIONS FOR INTERIOR SURFACE OF EXTERIOR WALL
ADDITIONAL "CONTROL LAYER" INFORMATION

1) AIR CONTROL LAYER:

A) THE AIR CONTROL LAYER IS OFTEN REFERRED TO AS AN "AIR BARRIER". SEVERAL PRODUCTS AND OPTIONS (SUCH AS LIQUID OR MEMBRANE APPLIED PROPRIETARY SYSTEMS) ARE AVAILABLE, WITH DIFFERING LEVELS OF COST AND COMPLEXITY.

B) THIS SET OF DETAILS REFLECTS AN AIR BARRIER SYSTEM ACHIEVED WITH SPECIFIC MASONRY DETAILING/CONSTRUCTION AND NON-PROPRIETARY COATINGS DESCRIBED IN NOTE C BELOW.

C) THE FOLLOWING NON-PROPRIETARY COATINGS ARE CONSIDERED TO MEET AN AIR LEAKAGE OF LESS THAN 0.04 CFM/SQ. FT. @ 75 PA. (SEE NCMA TEK 6-14A FOR ADDITIONAL INFORMATION)

1) PRESCRIPTIVE COMPLIANCE:
 - FULLY GROUTED CMU
 - CMU WALL WITH ONE APPLICATION OF BLOCK FILLER
 - AND TWO APPLICATIONS OF A PAINT OR SEALER COATING
 - CMU WALL WITH A PORTLAND CEMENT/SAND PARGE, STUCCO OR PLASTER WITH A MINIMUM THICKNESS OF 1/2".

2) BY LABORATORY TESTING:
 - 12" CMU SEAL WITH AT LEAST (2) COATS OF COMMERCIAL-GRADE LATEX PAINT.
 - 8" CMU COATED WITH A SINGLE COAT OF HIGH QUALITY LATEX PAINT.
 - 8" CMU COATED WITH A SINGLE COAT OF MASONRY BLOCK FILLER.

2) THERMAL CONTROL LAYER:

A) THIS SET OF DETAILS CALLS FOR INSULATION TO BE PLACED:
 1) IN THE UNGROUTED CELLS (INSERTS AND GRANULAR FILL, WHICH ENCOURAGE DRAINAGE)
 2) ON THE INTERIOR FACE (RIGID BOARD, SPF AND BATT INSULATION) ON THE CONCRETE MASONRY WALL.

B) SOME BUILDINGS, INCLUDING F (FACTORY), H (HIGH HAZARD), S (STORAGE) AND U (UTILITY & MISCELLANEOUS) OCCUPANCIES MAY NOT REQUIRE HEAT AND/OR ENERGY CODE COMPLIANCE (REFERENCE 2015 MICHIGAN MECHANICAL CODE SECTION 309.1, EXCEPTIONS 1 & 2).

C) CONSIDER THE FOLLOWING OPTIONS TO DESIGN AND DEMONSTRATE CODE COMPLIANCE TO ASHRAE 90.1-2013.
 2) BUILDING ENVELOPE TRADE-OFF OPTION (COMCHECK)
 3) ENERGY COST BUDGET METHOD (DOE2, ENERGY PLUS)
RIGID INSULATION WITH FURRING/GYPS. BOARD

RIGID FOAM WITH COMPOSITE THERMAL BARRIER

SPRAY FOAM WITH METAL STUDS/GYPS. BOARD

NOTES:

THE THREE OPTIONS SHOWN ABOVE:

1) ARE JUST A FEW REPRESENTATIVE SAMPLES OF THE MULTITUDE OF AVAILABLE INTERIOR INSULATION SYSTEMS:
 A) RIGID BOARD — EXTRUDED OR EXPANDED POLYSTYRENE, OR POLYISOCYANURATE
 B) CLOSED-CELL SPRAY POLYURETHANE FOAM
 C) CELLULAR GLASS
 D) FIBROUS BATT
 E) FIBROUS BLOW-IN

2) DO NOT ADDRESS A VAPOR CONTROL LAYER, AND HAVE VARYING LEVELS OF VAPOR PERMEABILITY. THE DEGREE OF VAPOR PERMEABILITY AND INTERIOR SPACE HUMIDITY SHOULD BE CAREFULLY EVALUATED (DEWPOINT ANALYSIS) IN ORDER TO ACHIEVE PROPER CONDENSATION CONTROL.

3) HAVE NOT BEEN ANALYZED FOR AIR CONTROL LAYER PERFORMANCE. THE OTHER DETAILS IN THIS SET REFLECT AN AIR BARRIER SYSTEM ACHIEVED WITH SPECIFIC MASONRY DETAILING/CONSTRUCTION AND NON-PROPRIETARY COATINGS APPLIED DIRECTLY TO THE CMU (SEE SHEET A-12, NOTE #1). IF AN INTERIOR WALL INSULATION SYSTEM IS INCLUDED IN THE DESIGN, THE USER MAY WISH TO CONSIDER OTHER AIR BARRIER SYSTEMS (PERHAPS EVEN UTILIZING COMPONENTS OF THE INTERIOR WALL INSULATION SYSTEM, IF APPPLICABLE).

The decision to utilize this information is not within the purview of the MIM, and persons making use of this information do so at their own risk. MIM makes no representation or warranties, expressed or implied, with respect to the accuracy or suitability of this information. MIM and its members disclaim liability for damages of any kind, including any special, indirect, incidental, or consequential damages, which may result from the use of this information. This information is not to be interpreted as indicating compliance with, or waiver of, any provision of any applicable building code, ordinance, standard or law.
NOTES:
The above option shown above:

1) IS AN EXAMPLE OF AN AVAILABLE INTERIOR INSULATION SYSTEM FOR AN INDUSTRIAL TYPEx WAREHOUSE BUILDING. THIS APPROACH FOR THE INTERIOR INSULATION SYSTEM RECOGNIZES THE INHERENT DURABILITY OF THE WALL SURFACE BEING EXPOSED AT THE LOWER SECTION OF THE WALL. THE CMU'S COULD HAVE THE UNGROUTED CELLS INSULATED (INSERTS AND GRANULAR FILL). THE UPPER SECTION OF THE WALL WOULD BE INSULATED WITH RIGID BOARD INSULATION (I.E. HEAVY DUTY POLYISOXYANURATE) ON THE INTERIOR FACE WITH OR WITHOUT THE UNGROUTED CELLS INSULATED.

2) SEE NOTE #2 ON SHEET A-13 FOR COMMENTS ADDRESSING A VAPOR CONTROL LAYER.

3) SEE NOTE #3 ON SHEET A-13 FOR COMMENTS ADDRESSING AN AIR CONTROL LAYER.

INSULATION OPTIONS FOR INTERIOR SURFACE OF EXTERIOR WALL — INDUSTRIAL/WAREHOUSE
NOTE:
VERTICAL REINFORCEMENT NOT SHOWN FOR CLARITY

INTEGRAL WATER REPELLENT
(IN CMU AND MORTAR)
AND A POST-CLEANING FIELD-
APPLIED BREATHABLE WATER
WATER REPELLENT

PAN FLASHING SYSTEM
DIRECTLY OVER THE
METAL FLASHING

28 Ga. STAINLESS STEEL FLASHING
W/ 2" VERTICAL LEG, HEMMED.
NO Drip, HORIZONTAL LAP 4" (MIN.) W/
NON-SKINNING BUTYL SEALANT
(BY MASON CONTRACTOR)

1 1/2"
— 2" W/ 1/2" HEM

1 1/4" x 1/8" CONTINUOUS TERMINATION
BAR W/ REMOVABLE FASTENERS
Ø 16" O.C. (MIN.) (BY ROOFING
CONTRACTOR)

COMPATIBLE METAL COUNTER FLASHING,
HEMMED, WITH Drip, LAP 4"
(MIN.) W/ NON-SKINNING
BUTYL SEALANT (BY ROOFING
CONTRACTOR)

NOTE:
8" CMU

INSULATION
(LOOSE FILL OR INSERTS)

PAINT (CAN FUNCTION AS
AN AIR BARRIER, SEE
SHEET A-12, NOTE #1)

DRAINAGE MATERIAL

REMOVABLE FASTENERS
BY ROOFING
CONTRACTOR

(BUILDING INTERIOR)

8" BOND BEAM
(W/ REINF.)

LADDER-TYPE HORIZ.
REINFORCEMENT
SPACED Ø 16" O.C.

(BUILDING INTERIOR)

ISOMETRIC VIEW

SECTION VIEW

UPPER WALL / LOW ROOF FLASHING DETAIL

A-14

The decision to utilize this information is not within the purview of the MIMA, and persons making use of this information do so at their own risk. MIMA makes no representation or warranties, expressed or implied, with respect to the accuracy or suitability of this information. MIMA and its members disclaim liability for damages of any kind, including any special, indirect, incidental, or consequential damages which may result from the use of this information. This information is not to be interpreted as indicating compliance with, or waiver of, any provision of any applicable building code, ordinance, standard or law.